Chapter 2 Test

- **1.** The point (0, 0) is on the graph defined by **A** $y = \cos x$
 - **B** $y = \sin x$
 - **C** both (a) and (b)
 - ${\bf D}$ none of the above
- **2. a)** Copy and fill in the following table of values, using a calculator. Express the values to four decimal places, where necessary

r	$v = \cos r$
N	$y = \cos x$
0°	
30°	
60°	
90°	
120°	
150°	
180°	

- **b**)Are there any duplicate values? Explain.
- c) How would your answer to part b) help you extend the table to 360°?
- **d**) Explain what would happen if you extended the table past 360°.
- e) Why does it make sense that the period of $y = \sin x$ and $y = \cos x$ are both 360°?
- 3. For the graph defined by $y = \sin x$ for the interval $0 \le x \le 360^\circ$, complete the following questions.
 - a) State the *x*-intercepts of the graph for this interval.
 - **b**) For what value(s) of *x* does the function reach its maximum?
 - **c**) For what value(s) of *x* does the function reach its minimum?
- **4.** a) Sketch two full cycles of the graph defined by $y = \sin (x + 90^\circ)$.
 - **b**) What other function represents the graph from part a)? Explain why this occurs.
- 5. a) For what two values of x do the graphs of $y = \sin x$ and $y = \cos x$ intersect for the interval $0 \le x \le 360^{\circ}$?
 - **b**) Use the unit circle to explain why this makes sense.

Mathematics for College Technology 12 Chapter 2 Test

- **6.** For the graph defined by $y = \sin (x 30^\circ)$, answer the following questions.
 - a) What are the first three positive *x*-intercepts?
 - **b**) Explain how the answer from part a) can be used to help you draw the graph.
- 7. For the graph defined by $y = 5 \cos [2(x 45^{\circ})]$, answer the following questions.
 - **a**) State the period, amplitude, and phase shift.
 - **b**) Describe a possible set of steps involved in graphing the function.
- **8.** The centre of a Ferris wheel is 10 m off the ground. Its radius is 9 m.
 - a) If a car on the Ferris wheel starts in the 3:00 position, determine an equation for its height relative to the centre of the Ferris wheel.
 - **b**) Rewrite the equation, letting *h* represent the height of the car relative to the ground, in metres.
- **9.** A cosine function has a range defined by $\{y \in \mathbb{R} \mid -4 \le y \le 0\}$, and it passes through the origin and the point (180, -4).
 - **a**) Draw a possible sketch of this function.
 - **b**) Write an equation representing the function.
 - c) Are there any other graphs and corresponding equations that match the given conditions? Explain your reasoning.
- **10.** Write the equation of a sine function that represents the graph shown.

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

11. Consider the graphs defined by

$$f(x) = 5 \cos(2x)$$
 and $g(x) = -5 \cos(\frac{x}{2})$.

- **a**) How are they alike?
- **b**)How are they different?
- c) Sketch the graphs of both f(x) and g(x) on the same set of axes.
- **12.** For each of the following functions
 - i) state the period, amplitude, horizontal and vertical shift, and range
 - ii) sketch two cycles of the function a) $f(x) = 5 \sin (2x - 90^\circ) + 1$

$$\mathbf{b})f(x) = -3\,\cos\left(\frac{x}{3}\right) - 2$$

- **13.** A certain cosine function
 - has a range of $\{y \in \mathbb{R} \mid -1 \le y \le 5\}$
 - has a period of 180°
 - passes through the point (30°, 5)
 - **a**) Draw a sketch of the function.
 - **b**) State an equation representing the function.
- **14.** Sound waves can be represented by trigonometric functions. Suppose the following function represents a sound.

- a) How would the graph change if the sound was made louder? Explain your reasoning.
- **b**) How would the graph change if the sound had a higher pitch? Explain.
- **15.** You can write $f(x) = (\sin x)^2$ as $f(x) = \sin^2 x$.
 - **a**) State the domain and range for $f(x) = \sin^2 x$. Explain how you determined the range.
 - **b**) Create a table of values and use it to sketch the graph of f(x).
 - c) State the period of the function.

- **16.** Consider the graph defined by $y = \cos x$.
 - a) Rewrite the equation after being transformed so the period is 1.
 - **b**) Modify the equation from part a) so the graph would have a period of 50.
 - c) A pebble is caught in a tire of radius0.4 m. The tire rotates once every 10 s.
 - i) For a function representing the horizontal distance from the centre of the tire, what would be the period of this function, in seconds?
 - ii) State the amplitude of the function.
 - **iii**) Write an equation representing this function. Assume the pebble starts in the 3:00 position.
- **17.** The table gives the approximate hours of daylight in Thunder Bay, Ontario, for the first and fifteenth of each month for a year.

Hours of Daylight Per Day			
Thunder Bay, Ontario			
Date	h/day	Date	h/day
Jan 1	8.2	Jul 1	15.8
Jan 15	8.6	Jul 15	15.5
Feb 1	9.3	Aug 1	14.8
Feb 15	10.1	Aug 15	14.1
Mar 1	10.9	Sep 1	13.2
Mar 15	11.7	Sep 15	12.4
Apr 1	12.7	Oct 1	11.5
Apr 15	13.5	Oct 15	10.7
May 1	14.4	Nov 1	9.7
May 15	15.0	Nov 15	9.0
Jun 1	15.6	Dec 1	8.4
Jun 15	15.9	Dec 15	8.1

- **a**) What would be the independent variable for this data?
- **b**) State the length of one full period. Explain your reasoning.
- c) State the range of this data.
- **d**) Explain how the answer to part c) can be used to determine the amplitude and vertical shift.
- e) Plot the points. Use graphing technology if it is available. Determine an equation that represents this data.