Chapter 4 Test

1. Simplify the following expressions. Write your answers using only positive

exponents.
a)
$$a^2 \times a^4$$
 b) $b^3 \div b^{-2}$
c) $(4x^{-3})^{-2}$ d) $\left(\frac{a^5}{b^2}\right)^{-3}$
e) $(2ab^3)^4$ f) $(6x^{-2})(-5x^{-4})$
g) $\frac{48k^{-3}}{8k^{-1}}$

- 2. Evaluate each of the following expressions, without the use of a calculator. Where appropriate, express your answer as a fraction. a) $(3 \times 4^5)^0$ b) 3^{-2} c) $\left(\frac{4}{5}\right)^3$ d) $16^{\frac{3}{4}}$
- **3.** Simplify the following expressions.

e) $27^{-\frac{1}{3}}$

a)
$$a^{\frac{1}{2}} \times a^{\frac{1}{3}}$$
 b) $(9a^6)^{\frac{1}{2}}$ **c**) $\frac{54w^{\frac{3}{2}}}{9w^{-\frac{1}{4}}}$

4. Use a calculator to evaluate the following expressions. Where appropriate, express your answer to two decimal places.

a)
$$200 \times (1.015)^{20}$$
 b) $144^{\overline{4}}$
c) $(-3)^{-2}$ d) $\sqrt[3]{(-5)^4}$

- **5.** Explain the difference between $(-5)^2$ and -5^2 .
- 6. a) Express $100^{\frac{3}{4}}$ as a radical.
 - **b**) Express $\sqrt[3]{(-64)^5}$ as a power with a rational exponent.
- 7. Describe the values of x for which the following statement is true: $\sqrt{x^2} = x$.

- 8. A formula for the volume of a sphere is $V = \frac{4}{3}\pi r^3$. Determine the radius of a sphere with a volume of 200 cm³. Express your answer to the nearest tenth of a centimetre.
- 9. For the graph defined by y = 3^x
 a) state the domain
 b) state the range
 c) state the *y*-intercept
 d) explain why the graph has no *x*-intercepts
- 10. For the graphs defined by y = 2^x, y = 5^x, and y = 10^x
 a) state how they are alike
 b) state how they are different
- **11.** Describe how to use a graphing calculator to solve $2^x = 25$.
- 12. a) Write an equation relating the amount, *A*, of a \$100 initial investment that grows at a rate of 1% per month for *n* months.
 - **b**) What will the investment be worth after 24 months?
 - c) How long, to the nearest month, will it take for the investment to double in value?
- **13.** Explain why $y = \left(\frac{1}{2}\right)^x$ and $y = 2^{-x}$

represent the same graph.

- 14. For functions of the form $f(x) = a^x$, state which values of *a* will result in each of the following types of graph.
 - a) a graph that represents an increasing function
 - **b**) a graph that represents a decreasing function
 - c) a graph that cannot be defined

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

- 15. The value of a house was \$200 000 when it was built at the end of 2009. It is expected to increase in value at a rate of 4% per year.
 - a) Write an equation using V for the value of the home and n for its age.
 - b) Use a graphing calculator to determine the value of the house when it is 30 years old.
- **16.** Due to a day of frost, 10% of a colony of beetles died. There were initially 2000 beetles in the colony.
 - a) Write an equation for the number of beetles, *n*, after *d* days of frost.
 - b) Use a graphing calculator to determine how many days of frost it will take for only 20% of the beetles to remain.
- **17.** The following table shows the value of a motorcycle *n* years after it was purchased.

Year	Value (\$)
1	15 000.00
2	10 500.00
3	7 350.00
4	5 145.00
5	3 601.50

- a) State the percentage by which the motorcycle is losing value each year.
- **b**) Determine the value of the bike when it was new.
- c) Write an exponential function relating the value, *V*, to the age, *n*.
- **d**) Determine the value of the motorcycle when it is 10 years old.
- e) Use a graphing calculator to determine how old the motorcycle will be when it is worth \$1000. Express your answer to the nearest tenth of a year.
- **18.** Solve the following equations.

3

a)
$$2^x = 64$$

b) $3^x = \frac{1}{81}$
c) $64^x = 16^{x^+}$

Mathematics for College Technology 12 Chapter 4 Test

- **19.** a) Solve $2^{x+3} = 4^{x-1}$.
 - **b**) Describe how the point of intersection of the graphs defined by $y = 2^{x+3}$ and $y = 4^{x-1}$ is related to the equation in part a).
- **20.** a) Write log1000 = 3 in exponential form.
 - **b**) Write $2^x = 128$ in logarithmic form.
- 21. Evaluate without using a calculator.a) log₃81
 - **b**) log 0.01
 - c) $\log_5 5^{1/2}$
 - **d**) log₂0.25
 - e) $\log_a \sqrt[3]{a^2}$
- **22.** Explain why $\log_a 1 = 0$ when a > 0.
- **23.** a) Describe how points from the graph defined by $y = 2^x$ can be used to graph $y = \log_2 x$.
 - **b**) How are the domain and range of $y = 2^x$ related to the domain and range of $y = \log_2 x$?
- **24.** a) Without using a calculator, evaluate $\log_4 64$.
 - **b**) Use a calculator to evaluate $\frac{\log 64}{\log 4}$.
 - c) Use your results from parts a) and b) and a calculator to evaluate log₅40 to one decimal place.
- **25.** The number of bacteria in a culture doubles every hour. It is estimated there were 500 bacteria at noon on Monday.
 - a) Write an exponential equation relating the number of bacteria, *n*, and the number of hours, *h*, since noon Monday.
 - **b)** Later, there are 20 000 bacteria. Using this information, rewrite the equation in logarithmic form.
 - c) Use the method from #24c) to determine when there will be 20 000 bacteria. Express your answer to the nearest minute.

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

