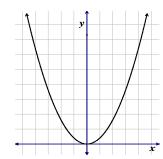
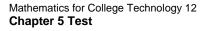
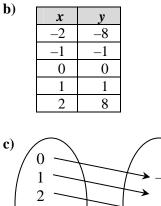


Chapter 5 Test

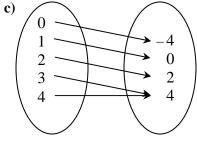
1. State whether each of the following represents a function.



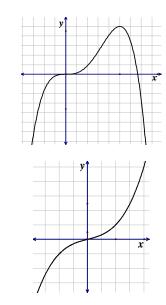

2. State whether each of the following represents a polynomial function.
a) h(x) = 2x + 1


b)
$$y = \sqrt{x}$$

c) $y = \sin^2 x + 3\sin x + 2$
d) $g(x) = 4x^4 - 6x^2 + 7$
e) $f(x) = 3x^2 + 4 - x^{-2}$

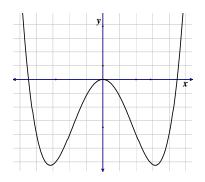

3. State the domain and range of each of the following.a)

2



a)

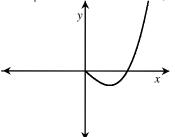
b)


- **4.** Answer the following questions for each graph.
 - i) Does it represent a function with even degree or odd degree?
 - ii) What is the sign of the leading coefficient?

5. Explain how the degree of a polynomial function is related to the maximum number of *x*-intercepts on its graph.

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

- 6. If a polynomial function has no x-intercepts, what do you know about the degree of the function? Explain your reasoning.
- 7. For each of the following functions, state the values of x at which the graph crosses the x-axis. Note: Do not include values of x at which the graph only touches the x-axis. a) f(x) = x(x+10)(x-5)**b**) $g(x) = (x+7)^2(x-1)$
- 8. For the graph defined by $y = (x + 1)^2(x 2)$, answer the following questions.
 - a) At which value(s) of x does it cross the x-axis?
 - **b**) At which value(s) of x does it touch but not cross the x-axis?
 - c) What is the degree of the polynomial function? Describe the end behaviour.
 - **d**) Sketch the function.
- **9.** For the following function, the *x*-intercepts are -2, 0, and 2. Suggest an equation that might represent this function. Explain your reasoning.



10. State whether each of the following equations represents an even function, an odd function, or neither.

a)
$$y = x^4 + x^2 + 1$$

b) $xy = 9$
c) $y = x^3 + 1$
d) $y = \frac{x}{x^2 + 1}$

11. Is there a difference between a function of odd degree and an odd function? Explain your reasoning.

12. The following represents half of an odd function. Sketch the missing half.

- 13. Describe two different ways a graphing calculator can be used to determine the y values of a function for given x values.
- 14. Factor the following expressions completely.
 - a) x(x+2) 5(x+2)**b**) $5a^2 + 10ab - 75b^2$
 - c) $4r^2 12r + 9$

 - **d**) $100x^2 25y^2$
 - e) $12x^2 17x 40$
- **15.** A 10-m by 10-m lawn is surrounded on all four sides by a concrete sidewalk of width *x* metres. The area of the sidewalk is represented by the equation $A(x) = 4x^2 + 40x$.
 - a) What is meant by A(2)?
 - **b**) Evaluate A(2).
 - c) Determine the width of the sidewalk when its area is 80 m^2 . Express your answer to the nearest tenth of a metre.

- **16.** a) Factor the expression $x^2 + 5x 14$.
 - **b**) Explain how the answer from part a) relates to the *x*-intercepts of the graph defined by $y = x^2 + 5x - 14$.
- **17.** The height of a ball, in metres, *t* seconds after Emma kicks it is given by $h(t) = -5t^2 + 20t$.
 - a) Determine the ball's height 1 s after Emma kicks it.
 - **b**) How long is the ball in the air? Explain how you know.
 - c) Use the answer from part b) to determine when the ball reaches its maximum height, and what the maximum height is.

Copyright © 2010 McGraw-Hill Ryerson Limited 978-007090899-4

