Date:

Chapter 2 Review

2.1 Graphs of Sinusoidal Functions

1. a) Determine $y = \sin x$ for each angle and all the related angles, from 0° to 360°.

	$y = \sin x$	
x	Exact	Approximate
0°		
30°		
45°		
60°		
<u>90°</u>		

b) Graph $y = \sin x$.

- c) Explain why $y = \sin x$ is a function.
- 2. For the functions y = sin x and y = cos x on the interval 0° ≤ x ≤ 360°, determine
 a) the amplitude
 - a) the amplitu
 - **b**) the period
 - c) the domain and ranged) the *x* and *y*-intercept(s)
 - e) the intervals of increase and decrease
- **3.** A bicycle wheel has diameter 24 in. Let the origin be at the centre of the wheel. Consider a point on the tire along the positive *x*-axis.
 - a) Sketch a graph of the horizontal displacement of this point versus the angle of rotation for one cycle. Which function, sine or cosine, models the horizontal displacement? Explain.
 - **b)** Sketch a graph of the vertical displacement of this point versus the angle of rotation for one cycle. Which function models the vertical displacement? Explain.

2.2 Translations of Sinusoidal Functions

- **4.** Determine the phase shift and the vertical translation.
 - **a)** $y = \sin(x + 14^\circ) 12$
 - **b)** $y = \sin(x 5^\circ) + 7$
 - c) $y = \cos(x 36^{\circ}) 4$
 - **d**) $y = \cos(x + 85^\circ) + 10$

5. Determine the phase shift and the vertical shift. Sketch two cycles of the function.

BLM 2-3

a) $y = \sin(x - 30^\circ) + 3$

b) $y = \cos(x + 40^{\circ}) - 1$

6. Use Technology

- a) Graph the function $y = \sin^3 x$ on the interval $0^\circ \le x \le 720^\circ$.
- **b)** Predict how the graph of $y = \sin^3 (x + 90^\circ) 2$ will differ from the graph of $y = \sin^3 x$. Check by graphing.
- c) Predict how the graph of $y = \cos^3 x 2$ will compare to the graph of $y = \sin^3 (x + 90^\circ) - 2$. Check by graphing.

2.3 Stretches, Compressions, and Reflections of Sinusoidal Functions

7. Determine the vertical stretch or compression and the horizontal stretch or compression.

a)
$$y = 5 \sin 3x$$

b)
$$y = -3 \cos 2x$$

c) $y = \frac{1}{2} \sin \frac{1}{3}x$
d) $y = 6 \cos \frac{1}{4}x$

8. Determine the amplitude and period, and then sketch a graph of two cycles.

a)
$$y = 2 \sin 3x$$

b) $y = 4 \cos \frac{1}{2}x$
c) $y = -\frac{1}{2} \sin 4x$

d) $y = 3 \cos 2x$

9. The graph of $f(x) = \sin x$ is vertically stretched by a factor of 5, horizontally stretched by a factor of 3, and reflected in the *x*-axis. Write an equation for the new function, g(x).

Copyright © 2010 McGraw-Hill Ryerson Limited 978-07-090900-7

BLM 2–3 (continued)

2.4 Combining Transformations of Sinusoidal Functions

10. Determine the amplitude, period, phase shift, and vertical translation of each function.

a)
$$y = 2 \sin [3(x + 18^\circ)] + 9$$

b) $y = \frac{1}{5} \cos [5(x - 37^\circ)] + 4$
c) $y = -7 \sin [12(x + 46^\circ)] - 3$
d) $y = 4 \cos \left[\frac{2}{5}(x - 10^\circ)\right] - 8$

- 11. a) Describe the transformations that must be applied to $f(x) = \sin x$ to obtain $g(x) = 3 \sin 4x + 2$. Apply each transformation, one step at a time, to sketch one cycle of g(x).
 - **b**) State the domain and range of g(x).
 - c) Suppose g(x) is shifted 30° to the right to obtain h(x). Write the equation of h(x), and then graph h(x).
- **12.** Consider the function
 - $g(x) = 2 \cos \left[3(x+60^{\circ})\right] 1.$
 - **a)** State the amplitude, period, phase shift, and vertical translation.
 - **b)** Transform the graph of f(x) to g(x). Show each step in the transformation.
 - c) State the domain and range of g(x).

2.5 Representing Sinusoidal Functions

- **13.** a) Write an equation in the form $y = a \sin kx$ of a sine function that has amplitude 4, period 120°, and a maximum at (30°, 4).
 - **b)** Write an equation in the form $y = a \cos kx$ of a cosine function that is reflected in the *x*-axis, has amplitude 5, period 720°, and a maximum at (360°, 5).

- 14. Write an equation of a function in the form $y = a \sin [k(x - d)] + c$ for the graph of $f(x) = \sin x$ after it has been vertically compressed by factor $\frac{1}{3}$, horizontally stretched by factor 2, shifted right 16°, and translated down 9 units.
- 15. Write an equation of a function in the form $y = a \cos [k(x d)] + c$ for the graph of $f(x) = \cos x$ after it has been reflected in the *y*-axis, vertically stretched by factor 8,

horizontally compressed by factor $\frac{2}{3}$,

shifted left 40°, and translated up 4 units.

2.6 Solving Problems Involving Sinusoidal Functions

16. André measured tides at the Bay of Fundy. He recorded his data in a table.

Time	Water Height (m)	
7 a.m.	13	
10 a.m.	9	
1 p.m.	5	
4 p.m.	9	
7 p.m.	13	

- a) Construct a cosine model for the water height, *h*, as a function of *n*, the number of hours past high tide.
- **b)** Construct a sine model for the water height, *h*, as a function of *n*, the number of hours past high tide.
- 17. The height above ground of a rider on a Ferris wheel can be modelled by the equation $h(t) = 14 \sin [18(t-5)] + 16$, where *t* represents time, in seconds, and *h* represents the height, in metres, of the rider above the ground.
 - a) What is the initial height of the rider?
 - **b)** How long does one rotation take?
 - c) What is the maximum height of the rider?

