Chapter 4 Prerequisite Skills

Apply the Exponential Laws

1. Write each expression as a single power, and then evaluate.

a)
$$5^3 \times 5^2$$

b) $(-4)^4 \times (-4)^3$
c) $\left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^5$
d) $\left(-\frac{1}{3}\right)^3 \times \left(-\frac{1}{3}\right)^2$

2. Write each expression as a single power, and then evaluate.

a)
$$8^{5} \div 8^{3}$$

b) $2^{9} \div 2^{4}$
c) $\left(\frac{1}{4}\right)^{7} \div \left(\frac{1}{4}\right)^{3}$
d) $\left(-\frac{1}{2}\right)^{12} \div \left(-\frac{1}{2}\right)^{6}$

3. Write as a single power, and then evaluate. **a)** $(5^3)^2$ **b)** $(2^2)^4$

c)
$$[(-3)^3]^2$$
 d) $\left[\left(\frac{1}{2}\right)^3\right]$

Zero and Negative Exponents

4. Evaluate. Express your answers as fractions or integers.

a)
$$4^0$$
 b) 3^{-1} **c)** 6^{-2}
d) 2^{-5} **e)** $(-5)^{-3}$ **f)** $-\left(\frac{3}{4}\right)^0$

5. Simplify. Write your answers using only positive exponents.

a)
$$(x^{2})(x^{7})$$
 b) $a^{8} \times a^{-5}$ **c)** $b^{7} \div b^{-4}$
d) $(t^{6})^{-2}$ **e)** $\frac{k^{-8}}{k^{-3}}$ **f)** $\frac{(n^{12})^{0}}{n^{-9}}$

Solve Linear Equations

6. Solve for x.

a)
$$3x + 7 = 2x - 4$$

b)
$$4(x-2) = x - 2(x-1)$$

Work With Formulas

7. Rearrange the formula to isolate the indicated variable.
a) V = πr²h: solve for r

BLM 4-1

b)
$$y = mx + b$$
; solve for m

c)
$$A = \frac{(a+b)n}{2}$$
; solve for a

8. Substitute the indicated values. Determine the value of the remaining variable. a) $A = P(1 + r)^t$; A = \$5000, r = 0.04,

t = 3 years
b)
$$V = \frac{1}{3}\pi r^2 h$$
; $V = 2000 \text{ cm}^3$, $h = 30 \text{ cm}$
c) $T_{\rm C} = \frac{5(T_{\rm F} - 32)}{9}$; $T_{\rm C} = 28 \text{ °C}$

Linear and Quadratic Relations

9. Graph each linear relation. Label the *y*-intercept.

a)
$$y = -3x + 5$$

b) $y = \frac{1}{4}x - 3$
c) $2x + 3y = 9$
d) $y = 4$

- **10.** Graph each quadratic relation. Label the vertex.
 - **a**) $y = x^2 5$ **b**) $y = 3 - x^2$ **c**) $y = (x + 2)^2 - 7$ **d**) $y = -2(x - 4)^2 + 1$
- **11.** Use finite differences to determine whether each relation is linear, quadratic, or neither.

a)

x	У	D)	x	у
-2	14		-2	0
-1	9		-1	-15
0	6		0	-16
1	5		1	-9
2	6		2	0

