Name:

Chapter 4 Review

4.1 The Exponent Laws

1. Use the exponent laws to simplify. Leave your answers in exponential form.

a)
$$\frac{8^{12}}{8^4}$$
 b) $(4^5)^3$
c) $\frac{0.4^9}{(0.4^2)(0.4^3)}$ d) $(5a^2b^4)^3$

2. Simplify. Express your answers using only positive exponents.

a)
$$(x^7)^{-5}$$

b) $(z^{-6})(z^2)$
c) $\left(\frac{3u}{7v^3}\right)^2$
d) $(-3x^{-4})(-4x^{-2})$
e) $(-5p^{-7}q)^{-3}$
f) $\left(\frac{2a}{3b^6}\right)^{-2}$

- **3.** Evaluate using a calculator. Round your answers to four decimal places where necessary.
 - **a**) 3.4^{-2} **b**) 6×8.5^{-1} **c**) $\sqrt[3]{5.8^4}$ **d**) -2.9^{-5} **e**) $\sqrt[5]{79.4^3}$ **f**) $\sqrt[3]{(-7.1)^5}$
- **4.** Simplify. Express your answers using only positive exponents.

- 4.2 Solving Exponential Equations Graphically
- 5. How is the graph of $y = \left(\frac{1}{3}\right)^x$ related to the graph of $y = 3^{-x}$? Explain why.

6. a) Graph $y = \left(\frac{1}{4}\right)^x$, $y = \left(\frac{1}{2}\right)^x$, and $y = 0.7^x$

BLM 4-3

without technology.

- b) Compare the three graphs. Discuss domain and range, asymptote, *y*-intercept, *y*-value when x = 1, and steepness or rate of decrease.
- 7. a) Sketch the graph of an exponential function that has the following properties:
 domain {x ∈ ℝ}
 range {y ∈ ℝ, y > 0}

- horizontal asymptote y = 0
- increasing function
- **b)** Is it possible to sketch the graph of another exponential function with the same properties as the exponential function in part a)? Explain.
- 8. Use the graph of $y = 2^x$ to solve the equation $2^x = \frac{1}{4}$.
- **9.** a) Without a calculator, estimate the value of $4^x = 50$. Justify your answer.
 - **b)** Use Technology Use a graphing calculator to graph $y = 4^x$ and y = 50 to solve the equation $4^x = 50$. Round your answer to one decimal place.
- 10. Use Technology \$2000 is invested at a rate of 4% per year. The amount of money in the account is represented by the equation $A = 2000 \times 1.04^n$, where *n* is the number of years and *A* is the amount, in dollars.
 - **a**) Graph the relation using technology.
 - **b**) What does 2000 represent on the graph?
 - c) How much will be in the account after 5 years?
 - **d)** How long would it take to double the initial investment?

Mathematics for College Technology 12: Teacher's Resource **BLM 4–3 Chapter 4 Review**

Copyright © 2010 McGraw-Hill Ryerson Limited 978-07-090900-7

BLM 4-3 (continued)

4.3 Solving Exponential Equations Numerically

11. Solve each of the following equations by finding a common base.

a) $2^x = 16$	b) $(-3)^x = -27$
c) $6^{x+3} = 36^x$	d) $4^{x-2} = 1$
e) $25^{2-x} = 125^{2x-4}$	f) $8^{x+3} = 16^{2x+1}$

12. Use Technology Use systematic trial to find a solution to the following equations. Round your answers to one decimal place.

a)
$$5^x = 8$$

b) $2^x = 40^{-3}$

b) $3^x = 40$ $e^{x} - 6^{x} = -100$

c)
$$-6 = -10$$

d) $4^{2x} = 73$

13. Solve each of the exponential equations by finding a common base. Express your answers as integers or fractions reduced to lowest terms.

a)
$$\left(\frac{4}{9}\right)^{x} = \frac{27}{8}$$

b) $\left(1\frac{3}{8}\right)^{2x} = \frac{64}{121}$
c) $5^{2x+1} = \frac{1}{625}$
d) $16^{\frac{1}{3}(x+2)} = 8^{\frac{1}{4}(x-3)}$
e) $\left(\sqrt[3]{16\ 807}\right)^{x+5} = \left(\sqrt{49}\right)^{x-1}$

- 14. A radioactive sample with a mass of 80 mg has a half-life of 3 days.
 - a) Write an equation that models this exponential decay, where t is the time, in days, and A is the amount remaining, in milligrams.
 - **b**) Determine the amount of the sample remaining after 10 days. Round your answer to the nearest tenth of a milligram.
 - c) How long will it take for the sample to decay to 5 mg?

4.4 Points of Intersection

- 15. Determine the point of intersection, if it exists, for each pair of functions.
 - **a)** $y = 2^{x+3}$ and $y = 8^{x-3}$
 - **b**) $y = 27^{x}$ and $y = 3^{x+2}$ **c**) $y = 25^{x+2}$ and $y = 125^{2(x+2)}$
 - **d**) $v = 2^{x+3}$ and $v = -4^{x+1}$
- **16.** a) Graph the exponential function $y = 3^x$ and the linear function y = 9 on the same set of axes.
 - b) Determine the point of intersection of the graphs of the two functions.
 - c) State the *x*-coordinate of the point of intersection you found in part b).
 - d) How could the solution be determined without graphing? Explain why.
- 17. The table gives Wanda's yearly earnings, in dollars, rounded to the nearest dollar, since the beginning of 2005.

Year	Earnings (\$)
2005	35 000
2006	35 700
2007	36 414
2008	37 142
2009	37 885

- a) Use the table to construct a model for Wanda's yearly earnings.
- **b)** Predict Wanda's earnings in 2012.
- c) Predict when she might expect to earn more than \$45 000.

4.5 Logarithms

18. Write each logarithm statement in exponential form.

a)
$$\log_2 32 = 5$$

b) $\log 0.001 = -3$
c) $\log_9 3 = \frac{1}{2}$

Copyright © 2010 McGraw-Hill Ryerson Limited 978-07-090900-7

- **19.** Evaluate each of the following logarithms.
 - **a)** log₄ 64
 - **b**) log₃ 243
 - c) $\log_2 \frac{1}{256}$
 - **d)** log 1
- **20.** a) Explain how $y = 3^x$ can be used to evaluate $\log_3 18$.
 - **b)** Use Technology Use a graphing calculator to evaluate log₃ 18, rounded to one decimal place.

4.6 Solving Problems Using Logarithms

- 21. Evaluate each of the following to three decimal places.
 a) log₆ 37
 b) log₁₂ 25
- 22. Solve each of the following for t to two decimal places. a) $7^t = 65$ b) $1000 = 250(1.03)^t$
- **23.** An investment of \$2500 earns 3.75% per year, compounded semi-annually.
 - a) Write an equation to model the amount, *A*, in dollars, after *t* years.
 - **b)** How long will it take for the investment to double in value? Express your answer to the nearest tenth of a year.