
Principles of Mathematics 9, pages 104–109

A

- 1. Use algebra tiles to represent each area.
 - a) 4 square units
 - **b)** 9 square units
 - c) $2x^2$ square units
 - **d)** $4x^2$ square units
- **2.** Use tiles to model each algebraic expression.
 - **a)** $x^2 + 5x$
 - **b)** $3x^2 4x$
 - c) $2x^2 + 3x + 4$
 - **d)** $x^2 5x 3$
- **3.** Write the algebraic expression represented by each model.

4. Each unit tile represents 1 m that Jacinth walked on a hike. Find each distance.

- 5. a) Build an area model to represent a square with length and width both equal to 5 cm. Sketch the model and label the length and width.
 - **b)** What is the area? Write this as a power.
- 6. a) Build a volume model to represent a cube with length, width, and height all equal to 3 cm. Sketch the model and label the length, width, and height..
 - **b)** What is the volume? Write this as a power.
- 7. a) Build a volume model to represent a cube with length, width, and height all equal to 5 cm. Sketch the model and label the length, width, and height.
 - **b)** What is the volume? Write this as a power.
 - c) Write an expression for the area of one face as a power. Evaluate the area of one face.

- 8. The area of one face of a cube is 64 cm^2 .
 - a) What side length of the cube would give this area?
 - **b)** Determine the volume of the cube. Write this as a power.
- **9. a)** A cube has a volume of 125 cm³. Find the total surface area of all six faces.
 - b) A cube has a volume of 343 cm³.
 Find the total surface area of all six faces.
- 10. The total surface area of all six faces of a cube is 96 cm^2 .
 - a) Determine the area of one face of the cube.
 - **b)** What side length of the cube would give this area?
 - c) Determine the volume of the cube. Write this as a power.
- **11.** Use tiles to build an area model that has length and width as indicated.
 - a) length = x, width = x + 2
 - **b)** length = x + 1, width = x + 3
 - c) length = x + 4, width = x
 - d) length = x + 2, width = x + 3

- 12. Two cubes have a total volume of 72 cm³. Both cubes have whole-number side lengths.
 - a) Find the side length of each cube.
 - **b)** Find the total surface area of both cubes.
- **13.** What is the final digit in the number 2687^{398} ? Hint: First compute 7^1 , 7^2 , 7^3 , 7^4 , 7^5 , ..., until you see a pattern. Why are the final digits of these numbers the same as the final digits of 2687^1 , 2687^2 , 2687^3 , ...?

A

- 1. Write each as a power.
 - a) $5 \times 5 \times 5 \times 5 \times 5 \times 5$
 - **b)** $(-3) \times (-3) \times (-3) \times (-3)$
 - c) $2.03 \times 2.03 \times 2.03 \times 2.03 \times 2.03$
 - $\mathbf{d} \quad \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right)$
- 2. Write each power in expanded form.

a)
$$2^4$$
 b) $(-4)^5$
c) 0.7^3 **d)** $\left(-\frac{3}{4}\right)^2$

- 3. Evaluate.
 - **a**) 2³
 - **b)** (-4)²
 - c) -4^2
 - **d**) $(-6)^3$
 - e) $\left(\frac{3}{4}\right)^4$
- 4. Evaluate.
 - **a)** $\left(-\frac{2}{3}\right)^3$ **b)** 2.3³
 - c) 1^5
 - **d)** $(-1)^{99}$
 - **e)** -1^{28}
- **5.** Evaluate. Remember to use the correct order of operations.
 - **a)** $2^3 + 2^4$ **b)** $4^5 4^3$
 - c) $4^2 \times 2^4$ d) $2^6 \div 4^3$

- **6.** Evaluate. Remember to use the correct order of operations.
 - **a)** $2^4 + 2^2 2^3$
 - **b)** $2^4 2^2 + 2^3$

c)
$$(5^2 - 3^2) + (5^2 - 3^2)$$

$$\mathbf{d} \quad \left(\frac{3}{4}\right)^2 \times \left(-\frac{2}{3}\right)^3$$

e)
$$30(2)^3$$

f)
$$-5(-3)^2$$

- 7. Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.
 - **a)** $5a^2$; a = 3
 - **b)** πr^2 ; r = 2.5
 - c) $c^2 b^2; b = 5, c = 13$

d)
$$\frac{1}{3}\pi r^2 h$$
; $r = 6, h = 4$

e)
$$4\pi r^2$$
; $r = 1.2$

f) $x^2 - 3x - 10; x = -2$

B

8. a) Evaluate each power.

 3^1 3^2 3^3 3^4 3^5

- **b)** Examine the final digit of each of your answers. What pattern do you notice?
- c) Use the pattern that you found in part b) to determine the final digit in the number 3243³²⁴³.

36

- **9.** Staphylococcus aureus is a type of bacteria that can cause dangerous health problems. It doubles every 60 min. The initial population of a sample of Staphylococcus aureus is 200.
 - a) Copy and complete the table.

Time (min)	Population of Staphylococcus aureus
0	200
60	400
120	
180	
240	

- **b)** Construct a graph of population versus time. Use a smooth curve to connect the points. Describe the shape of the graph.
- c) What will the population be after
 - 12 h? 1 day?
- 10. Bronchial pneumonia can be caused by the bacterium Streptococcus pneumoniae. The doubling time of Streptococcus pneumoniae is 20 min.
 - a) Copy and complete the table.

Time (min)	Population of Streptococcus pneumoniae
0	100
20	200
40	400
60	
80	
100	

b) Construct a graph of population versus time. Use a smooth curve to connect the points. Describe the shape of the graph.

- 11. The radius of a hydrogen atom is 0.000 000 6 mm. This number can be written in scientific notation as 6.0×10^{-7} .
 - a) How many hydrogen atoms placed in a row will make 3 mm?
 - **b)** How many balls, each with a diameter of 60 cm, placed in a row would have a length of 3000 km?
- 12. Iodine-131 is a radioactive isotope of iodine that is used in a sodium salt to diagnose thyroid disease. The half-life of Iodine-131 is 8 days, which means that it takes 8 days for the sample to decay to half its original amount.
 - a) Suppose you started with a 200-mg sample of Iodine-131. Copy and complete the table.

Number of Half-Life Periods	Time (days)	Amount of lodine-131 Remaining (mg)
0	0	200
1	8	$200\left(\frac{1}{2}\right)^1 = 100$
2	16	
3		
4		

- **b)** Construct a graph of the amount, in milligrams, of Iodine-131 remaining versus time, in days. Describe the shape of the graph.
- c) Approximately how much Iodine-131 will remain after 48 days?
- **d)** How long will it take until only 1 mg of Iodine-131 remains?
- **13.** Write each number in scientific notation.
 - a) 34 500 000 000
 - **b)** 0.000 000 005 12

A

- 1. Apply the product rule to write each as a single power. Then, evaluate the expression.
 - **a)** $4^3 \times 4^2$

b)
$$(-2)^2 \times (-2)^4$$

c)
$$2.5^3 \times 2.5^3$$

d)
$$(-1)^{15} \times (-1)^{25}$$

e)
$$\left(\frac{2}{3}\right)^4 \times \left(\frac{2}{3}\right)^3$$

f) $\left(-\frac{3}{5}\right)^2 \times \left(-\frac{3}{5}\right)^3$

- **2.** Apply the quotient rule to write each as a single power. Then, evaluate the expression.
 - a) $8^5 \div 8^3$ b) $(-5)^4 \div (-5)$ c) $3.2^5 \div 3.2^2$ d) $(-1)^{35} \div (-1)^{20}$

e)
$$\left(\frac{3}{4}\right)^6 \div \left(\frac{3}{4}\right)^3$$

f) $\left(-\frac{2}{5}\right)^5 \div \left(-\frac{2}{5}\right)^3$

3. Apply the power rule to write each as a single power. Then, evaluate the expression.

a)
$$(5^3)^2$$
 b) $(-4^3)^2$
c) $(0.2^2)^3$ **d)** $(-1^6)^3$
e) $\left[\left(\frac{1}{5}\right)^2\right]^2$ **f)** $\left[\left(-\frac{5}{6}\right)^3\right]^2$

- **4.** Simplify using the exponent laws. Then, evaluate.
 - a) $3^2 \times 3^4 \times 3^1$ b) $4^5 \div 4^2 \div 4$ c) $(2^3)^2 \times (2^2)^3$ d) $(2^6)^3 \div (2^4)^4$
- **5.** Simplify using the exponent laws. Then, evaluate.

a)
$$3^5 \times 3^2 \div 3^4$$
 b) $4^6 \div 4^3 \times 4^2$
c) $\frac{0.2^4 \times 0.2^3}{(0.2^2)^2}$ d) $\frac{(-3)^5 \div (-3)^2}{(-3)^2}$
e) $(6^2)^5 \times (6^3)^5 \div (6^5)^3$
f) $[(-5)^2]^3 \div (-5)^4 \times (-5)^2$

6. Simplify.

a)
$$x^5 \times x^3$$

b) $y^8 \div y^6$
c) $(m^4)^3$
d) $(d^2)^4$
e) $a^3b \times ab^3$
f) $c^5d^4 \div cd$

- 7. Simplify. a) $3x^3y^2 \times 5x^4y^3$ b) $8a^5b^3 \div 4ab^2$ c) $(2m^3n^2)^4 \div (-4mn)^2$ d) $(-c^3)^2 \times (-2c)^3$
- 8. Simplify.

a)
$$\frac{3d^4m^3 \times 8d^2m^5}{2d^2m^2 \times 6d^3m^2}$$

b)
$$\frac{2g^2h^3 \times (-3g^2h^2)^2}{3gh \times 6g^2h^2}$$

c)
$$\frac{33x^5y^7 \div 11xy^2}{12x^5y^3 \div 4x^2y^2}$$

- 9. Consider the expression $\frac{3x^3y \times 6xy^3}{(-3xy)^2}$.
 - a) Substitute x = -1 and y = 2 into the expression. Then, evaluate the expression.
 - **b)** Simplify the original expression using the exponent laws. Then, substitute the given values and evaluate the expression.
 - c) Describe the advantages and disadvantages of each method.
- 10. The probability of tossing tails with a standard coin is $\frac{1}{2}$, because it is one of two possible outcomes. The probability of tossing four tails in a row is

 $\left(\frac{1}{2}\right)^4$ or $\frac{1}{16}$.

- a) What is the probability of tossing
 - 9 tails in a row?
 - 12 tails in a row?
- **b)** Write each answer in part a) as a power of a power.
- **11. a)** What is the probability of rolling a 5 with a standard number cube?
 - **b)** What is the probability of rolling five 5s in a row with a standard number cube?
 - c) What is the probability of rolling a prime number with a standard number cube?
 - **d)** What is the probability of not rolling a 2 with a standard number cube?

- 12. A triangular pyramid has the numbers
 - 1, 2, 3, and 4 on its sides.
 - a) What is the probability of rolling a 3?
 - b) What is the probability of rolling four 3s in a row? Write as a power. Then, evaluate the expression.
 - c) What is the probability of rolling seven 3s in a row? Write as a power. Then, evaluate the expression.

- **13.** Evaluate each of the following. Express each answer in scientific notation and then in standard notation.
 - a) $4 \times 10^4 \times 2 \times 10^3$
 - **b)** $1.4 \times 10^3 \times 5 \times 10^2$

c)
$$(8 \times 10^9) \div (4 \times 10^5)$$

- **d)** $(4.6 \times 10^{11}) \div (2 \times 10^9)$
- 14. If $x^3 = \frac{1}{8}$, place the following values in order from least to greatest:

$$x, x^2, \frac{1}{x}, \frac{1}{x^2}$$

- **15. a)** Predict the screen output of your scientific or graphing calculator when you enter the following calculations: $(4 \times 10^9) \div (8 \times 10^5)$.
 - **b)** Is the answer what you predicted? Explain the answer that the calculator provided.

Principles of Mathematics 9, pages 130–139

A

- **1.** Identify the coefficient and the variable part of each term.
 - **a)** 3*x*
 - **b)** -5*y*
 - **c)** *dm*
 - **d)** -4*ab*
- **2.** Identify the coefficient and the variable part of each term.
 - **a)** $-w^3 y^2$ **b)** $-0.2e^5 f$ **c)** $\frac{2}{3}x^5$
 - **d**) $-\frac{3}{8}y^4$
- **3.** Classify each polynomial by the number of terms.
 - **a)** $4x^3$
 - **b)** -5ab + c
 - c) $7a^6 + b^5 10$
 - **d**) $-3m^7 n^4$
 - **e)** $x^2 3x + 4$
 - **f**) $x^2 y$

- 4. State the degree of each term.
 - a) 6xb) $-5x^3$ c) 7yd) u^5v^3 e) $0.4m^3n$ f) $\frac{2}{3}x^3y^5$ g) 5 h) -3
- 5. State the degree of each polynomial.
 - a) 2x + 5b) $a^2 - 3a - 5$ c) $d + 3e^3$ d) $m^4n^3 - 6m^5n^4$ e) $3xy + \frac{1}{2}x^3y^2$ f) $4x^2y^3 - \frac{2}{5}x^5y^3$
- 6. A soccer team earns 2 points for a win and 1 point for a tie. Let *w* represent the number of wins and *t* represent the number of ties. Write an expression that describes the team's total points.

- 7. The students at Northdale High School sell coupon books to raise money for a school trip. The school receives 45% of the money paid for the coupon books.
 - a) Choose a variable to represent the money paid for the coupon books.
 - **b)** Using your variable from part a), write the expression for the amount of money the school will receive.
 - c) Shannon sold one coupon book to her grandmother for \$20. Calculate the amount of money the school receives on this sale.
 - **d)** The sum of all coupon book orders was \$14 000. Use your formula to calculate how much the school will receive for this fundraiser.
- 8. In a basketball game, each player on the team receives 2 points for a basket and 1 point for a free throw.
 - a) Write an expression to represent a player's total score for the game.
 - **b)** In the game, Mohamed scored six baskets and five free throws. Use your expression to find Mohamed's total score.
- 9. On a multiple-choice test, you earn1 point for each correct answer and lose2 points for each incorrect answer.
 - a) Write an expression for a student's total score.
 - **b)** Tim answered 22 questions correctly and 3 incorrectly. Find Tim's score.

- **10.** Elizabeth has a summer job at a camera store. She earns a \$10 bonus for each gold membership and a \$5 bonus for each silver membership.
 - a) Write a polynomial expression that describes Elizabeth's total bonus.
 - **b)** Identify the variable and the coefficient of each term and explain what they mean.
 - c) How much will Elizabeth's bonus be if she sells 20 gold memberships and 30 silver memberships?
- **11.** A theatre charges \$80 for orchestra seats, \$50 for dress circle seats, and \$25 for balcony seats.
 - a) Write an expression that describes the total earnings from seat sales.
 - **b)** Identify the variable and the coefficient of each term and explain what they mean.
 - c) How much will the theatre earn if it sells 100 orchestra seats, 200 dress circle seats, and 150 balcony seats?
 - d) How much with the theatre earn if it sells 80 orchestra seats, 250 dress circle seats, and 200 balcony seats?

- **12.** Protect-a-Boat Insurance Company charges \$400 for liability, plus 15% of the value of the boat, plus \$200 per passenger.
 - a) Write an expression to model the insurance cost.
 - b) Find the cost of insurance for a \$120 000 boat that can carry 60 passengers.
- 13. Judy is training for an Ironman triathlon race. During her training program, she finds that she can swim at 1.5 km/h, cycle at 30 km/h, and run at 12 km/h. To estimate her time for an upcoming race, Judy rearranges the formula distance = speed × time to find that distance

time =
$$\frac{\text{unstanted}}{\text{speed}}$$

- a) Choose a variable to represent the distance travelled for each part of the race. For example, choose *c* for cycle.
- **b)** Copy and complete the table. The second row is done for you.

Part of the Race	Speed (km/h)	Distance (km)	Time (h)
swim			
cycle	30	С	$\frac{c}{30}$
run			

- c) Write a trinomial to model Judy's time.
- d) The upcoming Ironman race is a triathlon composed of a 3.8-km swim, a 180.2-km cycle, and a full marathon run of 42.2 km. Using your expression from part c), calculate how long it will take Judy to finish the race.

A

- **1.** Classify each pair of terms as either like or unlike.
 - a) 5x and -4x
 - **b)** 4*a* and 4*b*
 - **c)** $-x^3$ and -3x
 - **d)** $5m^2$ and $4m^2$
 - e) 4xy and 3yx
 - **f)** $4a^2b$ and $-3ab^2$
- 2. Write two like terms for each.
 - **a)** 10*d*
 - **b**) –*m*
 - **c)** $5a^2$
 - **d)** -4*ab*
 - **e)** $4x^2y^2$
 - **f)** 8
- **3.** Copy the two columns of terms into your notebook. Connect each term in the first column with the like term in the second column.

5x	$-3a^{2}b^{2}$
-3mn	$2x^3$
8	-3x
$4a^{5}$	-5
$-2x^{3}$	5mn
$6a^{2}b^{2}$	$7a^{5}$

- 4. Simplify by collecting like terms.
 - a) 5x + 2 + 3x + 4
 - **b)** 4y + 5 2y 3
 - c) 4m-3-m+4
 - **d)** 6n 4 5n 2
 - e) $3x^2 + 5 + 2x^2 + 4$
 - **f)** 7a + 3b 4a 5b

- 5. Simplify.
 - a) $3x^2 + 5x + 4x^2 + 2x$ b) 5a - 1 + 3 - 2a - 4 - a
 - c) $4m^2 + 3m + 2 2m^2 5m 3$
 - **d)** $5w^3 + 4w^2 3w w^3 + 2w^2 + 2w$
- 6. Simplify.
 - a) $3a^2 2ab 2b^2 2a^2 ab + b^2$ b) $2m^3n^2 + 3m^2n^3 - m^3n^2 - 2m^2n^3$ c) $-4x^2y + 5x - 3 - 3x^2y - 8x + 5$
 - **d)** $5r^4 + 3r^2 4 + 2r^4 2r^2 + 1$

- 7. The length of a rectangular garden is five times its width.
 - a) Write an expression for the perimeter of the garden.
 - b) Find the perimeter if the garden is 20 m wide.
 - c) Find the length and width if the perimeter is 180 m.
 - **d)** Write an expression for the area of the garden.
 - e) Find the area if the garden is 30 m wide.
 - f) Find the length and width if the area is 500 m^2 .
- **8.** Use algebra tiles, virtual algebra tiles, or a diagram to model and simplify each expression.
 - a) 2x + 3 + 4x + 1
 - **b)** 5y + 2 3y 1
 - c) $2c^2 + 3c + 4c^2 4c$

- 9. A square has an unknown side length, *x*.
 - a) Write a simplified expression for its perimeter.
 - **b)** Write a simplified expression for its area.
 - c) If the area of the square is 25 m², find the perimeter of the square.
- **10.** Kathe's Kitchen Stores estimates its profits at its five stores for the next *x* months as follows.

Store	Profit (\$)
North End	1500 <i>x</i> – 3200
South End	1300 <i>x</i> – 900
West End	2150 <i>x</i> – 1100
East End	1700 <i>x</i> – 5000
Central	1850 <i>x</i> – 800

- a) Copy the table, and add a column titled Profit (or Loss) After
 2 Months (\$). Complete the table and find the sum of the profits (or losses).
- **b)** Write a polynomial representing the total profit (or loss) at all five stores.
- c) Use your polynomial from part b) to calculate the sum of the profits (or losses) from all five stores after 2 months. Compare this to your answer from part a).
- **d)** Calculate the total profit (or loss) after 1 year.
- **11.** A regular pentagon has an unknown side length, *x*. Write a simplified expression for its perimeter.

С

12. John simplified the following expression:

$$x^2 + 3x + x^2 +$$
$$= x^4 + 6x^2$$

a) Describe the error that John made.

2x

- **b)** How can you convince John that these two expressions are not equal?
- c) Simplify the expression properly. How can you convince John that your answer is correct?
- 13. When asked his birth year, the 19th-century British mathematician Augustus De Morgan said that he was x years old in the year x^2 . In what year was he born?

Principles of Mathematics 9, pages 154–159

A

- 1. Simplify by removing brackets and collecting like terms.
 - a) (3x+2) + (5x+3)
 - **b)** (7m-5) + (3m+4)
 - c) (-3n+5) + (n-4)
 - **d)** (3k+2) + (5k+4) + (2k+3)
 - e) (6r+5) + (4r-1) + (3r-2)
- **2.** Simplify by adding the opposite polynomial.
 - a) (3x+5) (2x+3)
 - **b)** (7m+4) (3m+3)
 - c) (5s-2) (3s+5)
 - **d)** (4d-5) (2d-3)
 - e) (3r+7) (2r-5)
 - **f)** (6t-5) (3t+7)
- **3.** Simplify.
 - a) (3x+5)+(4x-3)
 - **b)** (5y-4) + (7y-3)
 - c) $(4p^2 + 8p + 2) + (2p^2 3p 4)$
 - **d)** $(6m^2 5mn 5n^2) (m^2 + mn 4n^2)$
 - e) (4a+5b)+(2a-3b)-(3a-b)
 - f) $(3p^2 2p) + (3p + 5q) (2q 2p^2)$

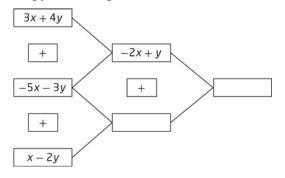
B

4. A soccer team gives each player a bonus on top of his or her base salary for every goal the player scores. Data for some of the team's players are given.

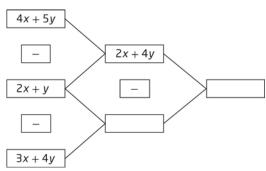
Player	Base Salary (\$1000s)	Goals
Gerros	60	70
Makaros	50	20
Smith	70	80

- a) Find a simplified expression for the total earnings for these three players if *b* represents the bonus, in dollars.
- **b)** Find the total earnings for these three players when b = \$300.
- 5. Winson is building a dock at his cottage. The length of the dock is twice the width, plus 3 m.
 - a) Draw a diagram of the dock and label the width and length with algebraic expressions.
 - **b)** Find a simplified algebraic expression for the perimeter of the dock.
 - c) Find an algebraic expression for the area of the dock.
 - **d)** If the width of the dock is 2 m, find the perimeter and area of the dock.

6. A group of employees at a shoe store are paid a yearly salary according to the following rate, where *n* is the amount of sales.


Employee	Fixed Yearly Salary (\$)	Commission
Susan	40 000	0.10 <i>n</i>
Kelvin	35 000	0.20 <i>n</i>
Jean	25 000	0.14 <i>n</i>
Luxana	20 000	0.16 <i>n</i>

- a) Write a simplified expression for the total amount paid to the group of employees.
- **b)** This table shows the sales achievement levels for the company.


Status	Sales (\$)
Silver	50 000
Gold	75 000
Platinum	100 000

Determine the total annual salary for the group if their sales achievement level

- reaches silver status
- reaches gold status
- reaches platinum status
- c) Which employee makes the highest salary at each achievement level?
- 7. Copy and complete the addition cascade.

8. Copy and complete the subtraction cascade.

С

9. A women's hockey team gives players a bonus on top of their base salary for every goal and for every assist they score. Data for some of the team's players are given.

Player	Base Salary (\$1000s)	Goals	Assists
Cruz	80	35	25
Gortan	60	20	18
McKinnon	100	42	30

- a) Write an algebraic expression for the earnings of each of these three players, where *g* represents the bonus for goals and *a* represents the bonus for assists.
- **b)** Find a simplified expression for the total earnings for these three players.
- c) Find the total earnings for these three players if g = 200 and a = 100.

10. A group of employees at a store are paid a weekly salary and a commission of 5% of their total weekly sales. The sales for last week are listed in the table.

Employee	Fixed Weekly Salary (\$)	Total Sales (\$)
Jack	700	10 000
Yaling	650	8 000
Stacia	800	6 500
Meisrain	900	8 500
Janet	1000	5 000

- a) Determine the weekly earnings for each employee.
- **b)** Find a simplified expression for the total amount paid to the group of employees, if *c* represents the commission, expressed as a decimal.

Principles of Mathematics 9, pages 160–169

A

- 1. Expand, using the distributive property.
 - a) 3(x+2)
 - **b)** 4(x-5)
 - c) -2(x+4)
 - **d)** -5(x-4)
- 2. Expand, using the distributive property.
 - **a)** 4(2a+3)
 - **b)** 6(3b-4)
 - **c)** -(6m+5)
 - **d)** -(4r-3)
- 3. Expand.
 - **a)** x(x+4)
 - **b)** *a*(*a* 5)
 - c) z(-z+3)
 - **d)** b(-2b+1)
- 4. Expand.
 - **a)** -w(3w+5)
 - **b)** -m(3m-2)
 - c) 4q(3q+7)
 - **d)** -7d(-2d-5)
- 5. Expand, using the distributive property.
 - **a)** $(m+2) \times 3$
 - **b)** $(d-3) \times 5$
 - c) $(3h+5) \times (-2)$
 - **d)** $(4r-1) \times (-3)$
- 6. Expand, using the distributive property.
 - **a)** $(q-4) \times 5$
 - **b)** $(b-6) \times 7$
 - c) $(5t+7) \times (-4)$
 - **d)** $(7c 3) \times (-5)$

- 7. Expand.
 - **a)** $3(x^2 + 5x + 4)$
 - **b)** $5(x^2 3x + 2)$
 - c) $4m(m^2 + 3m + 5)$
 - **d**) $5a(a^2 + a 4)$
 - e) $(x^2 + 7x + 3)(3)$
- 8. Expand.
 - a) $(x^2 + x 1)(-4)$ b) $(a^2 - a + 4)(5)$ c) $(r^2 + r - 5)(-1)$ d) 5[x + 3(x + 2)]
 - e) -4[5(b-3)-b]

- 9. Expand and simplify.
 - a) 5(x+4) + 3(x-6)
 - **b)** 3(a-5)-2(a+4)
 - c) 0.3(c+2) + 0.5(2c-5)
 - **d)** -4(4d-3) 2(3d+4)
 - e) 3k(k+5) + 4k(k-3)
- **10.** An electrician charges \$75 per visit plus \$25/h for house calls.
- a) Write an algebraic expression that describes the service charge for one household visit.
- **b)** Use your expression to find the total service charge for a 3.5-h repair job.
- c) Suppose all charges are double for evenings, weekends, and holidays. Write a simplified expression for these service charges.
- d) Use your simplified expression from partc) to calculate the cost for a 3.5-h repairjob on the weekend. Does this answermake sense?

11. Expand and simplify.

- a) -0.4h(3h-2) 0.3h(2h+3)
- **b)** 3(a+2) + 5(a-3) 2(a+4)
- c) 4(r-3) 3(r+2) + 2(r-5)
- **d)** $3a(2a+3) + 4(a^2+2a-4)$
- e) $5g(2g-3) 3(2g^2 4g + 3)$

12. A room has dimensions as shown.

- a) Find a simplified expression for the perimeter.
- **b)** Find a simplified expression for the area.
- c) Repeat parts a) and b) if both the length and width are doubled.
- **d)** Has this doubled the perimeter? Justify your answer.
- e) Has this doubled the area? Justify your answer.
- 13. The formula for the surface area of a rectangular prism is SA = 2(lw + hw + lh). Apply the distributive property to write this formula in another way.
- 14. Expand and simplify.

a)
$$\frac{1}{4}(8x+3) + \frac{1}{3}(6x+2)$$

b) $\frac{1}{5}(-5a+2b) - \frac{3}{4}(4a-b)$
c) $\frac{2}{3}(3m+5) + \frac{2}{5}(5m-4)$
d) $\frac{1}{2}(6a-5c) - \frac{1}{3}(6a+4c)$

С

- **15.** Expand and simplify.
 - a) 3x[x+4(x+2)]
 - **b)** 4m[3m-2(m-5)]
 - c) 2a[3a(a+4)] a(2a-3)]
 - **d)** 4[3-2(b+1)] + 3[4-2(b+1)]
 - e) -2[4 (y 4)] 3[2 + (y 3)]
 - f) -3[2c + (c + 3)] + 2[3c (c 2)]

16. Expand and simplify.

- a) (x+3)(x+4)
- **b)** (a+5)(a+6)
- c) (b+7)(b+3)
- **d**) (w+2)(w+8)
- e) (d+5)(d-2)
- **17.** Expand and simplify.
 - a) (z+3)(z-6)
 - **b)** (m-4)(m+5)
 - c) (y-5)(y+3)
 - **d)** (h-4)(h-8)
 - e) (p-3)(p-3)
- **18.** Expand and simplify.
 - a) $(x+2)(x^2+3x+4)$
 - **b)** $(y+3)(y^2-4y-5)$

- 1. Use algebra tiles to build a model for each situation. Write an algebraic expression to represent the model.
 - a) Sheila swam 5 km.
 - **b**) Ursula walked an unknown distance, three times.
 - c) Tasnia drove 5 km plus an unknown distance.
 - d) Susu read a book twice.
- 2. a) Build a volume model to represent a cube with side length 4 cm. Sketch the model and label the length, width, and height.
 - **b)** What is the volume of the cube? Write this as a power.
 - c) Write an expression for the area of one face of the cube as a power. Evaluate the area of one face.
 - **d)** Write an expression for the surface area of the cube. Evaluate the surface area of the cube.
- **3.** Evaluate.

a)
$$5^3$$
 b) $(-2)^6$
c) $\left(\frac{3}{4}\right)^3$ **d)** 1.06^5

4. Write as a single power. Then, evaluate the expression.

a)
$$3^2 \times 3^3 \times 3$$

b)
$$5^6 \div 5 \div 5^2$$

c)
$$4^6 \div 4^5 \times 4^2$$

d) $2^3 \times 2^5 \div 2^4$

e)
$$[(-3)^2]^3$$

f)
$$\frac{(5^4)^3}{5^5 \times 5^4}$$

- 5. E. coli is a type of bacteria that can cause dangerous health problems. It doubles every 20 min. The initial population of a sample of E. coli is 400.
 - a) Copy and complete this table.

Time (min)	Population of E. coli
0	400
20	800
40	
60	
80	
100	
120	

- **b)** Construct a graph of population versus time. Use a smooth curve to connect the points. Describe the shape of the graph.
- c) What will the population be after
 - 5 h? • 8 h?

6. Simplify.
a)
$$a^{5}b^{4} \times a^{3}b^{2}$$

b) $\frac{d^{6} \times d^{5}}{d^{7}}$
c) $\frac{m^{10}}{m^{3} \times m^{5}}$

d)
$$\frac{(y^6)^3}{(y^5)^2}$$

- 7. Identify the coefficient and variable part of each term.
 - **a**) 6*x* **b)** -5*y*
 - **d**) $4a^5b^3$ **c)** 7
 - **f**) $\frac{2}{3}x^2y^3$ **e**) *dm*

- **8.** In a hockey tournament, teams are awarded 4 points for a win and 2 points for an overtime win.
 - a) Write an expression that describes the number of points a team has.
 - **b)** Use your expression to find the number of points earned by a team that has five wins and two overtime wins.
- 9. State the degree of each term.
 - **a)** $5x^4$
 - **b)** $-7m^5$
 - **c)** $a^{3}b^{2}c$
 - **d)** 5
- **10.** State the degree of each polynomial.
 - **a)** 5x + 4
 - **b)** $3y^4 2$
 - c) $5m^2 + 3m + 6$
 - **d)** $6a^3 5a^2 + 4a 3$
- **11.** Classify each pair of terms as either like or unlike.
 - **a)** 3x and -7x
 - **b)** 4y and 5z
 - c) 4ab and -2ab
 - **d)** $3x^2y$ and $4xy^2$
 - **e)** 5*xy* and 3*yx*
 - **f)** $5m^2$ and $8m^2$
- 12. Identify the like terms in each set.
 - **a)** $5a^2$, -3b, 2d, $6x^2$, $7b^3$, $-5x^2$, 4a, 6c
 - **b)** $6y^2$, $5y^2$, $-4y^3$, 3, $-4y^2$, $-2y^3$

- **13.** Simplify by collecting like terms.
 - **a)** 3x + 5y + 4x + 6y
 - **b)** 5d + 3m 4d 5m
 - c) $2a^2 5a + 3 a^2 + 2a 6$
 - **d)** $3w^2 + 2wy y^2 2w^2 2wy + 4y^2$
 - e) 4d 8e 6f + 3d + 5e 10f
 - f) $6a^3 4ab + 5b^2 3 + 5a^3 3ab$
- 14. Simplify.
 - a) (5x+3) + (6x-4)
 - **b)** (4y-3) + (5y-2)
 - c) $(3p^2 + 5p + 4) + (7p^2 4p 3)$
 - **d)** $(4m^2 3mn 2n^2) (m^2 + mn 5n^2)$
 - e) (6a+8b)+(3a-4b)-(5a-3b)
- 15. A rectangular cake has dimensions 4x by 3x + 2. Find a simplified expression for its perimeter.
- 16. Expand.
 - a) 5(x+2)
 - **b)** -4(y-3)
 - c) 2m(3m+4)
 - **d**) -4g(2g-3)
- **17.** Expand and simplify.
 - a) 4(2x+3y)+5(3x+6y)
 - **b)** 3(4y-2w) 3(2y+1)
 - c) 4(3a+2b)+3(2a-3b)-(a+2b)
 - **d)** -4[3-2(c+5)-4c]