CHAPTER 2 Relations
2.5 Linear and Non-Linear Relations
Linear and non-linear relations, and the line of best fit

Example:

a) Crystal researched average life savings versus age for people living in her town. Her results are shown. Does the relation appear to be linear or non-linear? Explain.

b) Chad surveyed a number of students and collected data on age versus number of coins in their pocket or purse. The data are shown. Advise whether Chad should use a line of best fit to model these data. Explain your reasoning.

- c) As part of her commercial pilot training, Sunita was required to fly a cross-country trip with multiple legs. In her flight log, she kept track of the time, in hours, and the fuel burn, in litres, for each leg. The data are shown.
- i) Make a scatter plot of the data.
- ii) Add a line of best fit to the scatter plot. Comment on whether a line of best fit is a good model for these data.

Time (h)	Fuel (L)
1.5	44
2.2	65
1.8	49
3.6	108
2.8	85
3.2	95
1.1	33
2.5	75

iii) Use a line of best fit to estimate the fuel burn for a trip of 2.0 h and for a trip of 5.0 h.

Solution:

- **a)** The points do not appear to follow a straight line. The last few points definitely follow a curve. The relation appears to be non-linear.
- **b)** Chad should not use a line of best fit to model these data. There are not many data points. Those that are there do not appear to follow any apparent pattern.
- c) The scatter plot and line of best fit are shown. The points appear to follow a straight line. A line of best fit is a good model for these data.

Interpolate the graph to estimate a fuel burn of about 60 L for a 2.0 h flight.

Extrapolate the graph to estimate a fuel burn of about 150 L for a 5.0 h flight.

Practice:

- **1.** Lawrence is an avid bicycle rider. He kept track of time and distance for his last eight rides. The data are shown in the table.
- **a)** Make a scatter plot of the data.
- **b)** Add a line of best fit to the scatter plot. Comment on whether a line of best fit is a good model for these data.
- **c)** Use a line of best fit to estimate the distance for a ride of 4.0 h and for a ride of 8.0 h.

Time (h)	Distance (km)
2.5	48
5.3	105
4.4	86
3.6	72
4.8	95
2.9	58
1.4	25
6.3	125

Answers:

- **1. a)** The scatter plot and line of best fit are shown.
- **b)** The points appear to follow a straight line. A line of best fit is a good model for these data.
- c) Interpolate the graph to estimate a distance of about 80 km for a 4.0 h ride.

Extrapolate the graph to estimate a distance of about 160 km for a 8.0 h ride.

