Practice: First Differences

- 1. Consider the relation y = 2x 3.
 - a) Make a table of values for *x*-values from 0 to 5.
 - **b)** Graph the relation.
 - c) Classify the relation as linear or non-linear.
 - **d)** Add a third column to the table in part a). Label the column "First Differences." Find the differences between consecutive y-values and record them in this column.
- **2.** Consider the relation $y = \frac{1}{2}x^2$.
 - a) Make a table of values for x-values from 0 to 5.
 - **b)** Graph the relation.
 - c) Classify the relation as linear or non-linear.
 - **d)** Find the differences between consecutive y-values. Add a column to your table in part a) to record the first differences.
- **3.** Refer to your answers to questions 1 and 2. How can you use first differences to tell if a relation is linear or non-linear?
- 4. Copy and complete each table. State whether each relation is linear or non-linear.

a)	x	У	First Differences
	0	8	
	1	10	
	2	13	
	3	17	

b)	x	у	First Differences
	0	2	
	1	6	
	2	10	
	3	14	

5. Copy and complete the table for each equation. Identify each relation as linear or non-linear.

x	у	First Differences
1		
2		
3		
4		
a) $y = 2^x$	b) $y = -3x$

- **a)** y = 2 **b)** y = -3x **c)** y = x + 1 **d)** $y = x^2 + 1$
- 6. Collect like terms. Then, simplify.
 - a) 4b + 3 2b + 1
 - **b)** 2p 7 p + 4
 - c) 1 + 3y + 4 + y
 - d) 5 x 1 2x
 - e) 6a 2b + 3b + 2a
 - f) 7r + 2 + 3r r 1
 - **g**) 9s 2s + 5t 4s
 - **h**) -g 3h + 5h + 2g h
- 7. Simplify.
 - a) 4 + v + 5v 10
 - **b)** 7a 2b a 3b
 - c) 8k + 1 + 3k 5k + 4 + k
 - **d**) $2x^2 4x + 8x^2 + 5x$
 - e) $12 4m^2 8 m^2 + 2m^2$
 - f) -6v + 4v + 10 2v 6 v
 - **g**) 5+3h+h-4+h+6+2h **h**) $4p^2+2q^2-p^2+3p^2-7q^2$
- 8. Simplify.
 - a) 2a + 6b 2 + b 4 + a

 - b) 4x + 3xy + y + 5x 2xy 3yc) $m^4 m^2 + 1 + 3 2m^2 + m^4$ d) $x^2 + 3xy + 2y^2 x^2 + 2xy y^2$
- 9. The length of a rectangle is 2 times the width of the rectangle. Let x represent the width of the rectangle.
 - a) Write an expression to represent the length of the rectangle.
 - **b**) Write a simplified expression for the perimeter of the rectangle.
 - c) Suppose the width is 6 cm. Find the perimeter of the rectangle.