1. What binomial product does each model represent?

- 2. Model each binomial product using algebra tiles, virtual algebra tiles, or a diagram.
 - **a)** (x+3)(x+4) **b)** (x+2)(x+1)
 - c) (3x+2)(2x+1) d) (3x+1)(2x+3)
- **3.** Use the distributive property to find each binomial product.
 - **a)** (x+2)(x+5) **b)** (x+1)(x+3)
 - c) (d+3)(d+2) d) (q+5)(q+10)
 - e) (y+6)(y+1) f) (z+8)(z+8)
- **4.** Use the distributive property to find each binomial product.
 - **a)** (x-3)(x-4) **b)** (x-5)(x-6)
 - c) (m-2)(m-7) d) (a-6)(a-8)
 - **e)** (h-1)(h-4) **f)** (k-6)(k-6)

- **5.** Use the distributive property to find each binomial product.
 - **a)** (x+5)(x-4) **b)** (x+3)(x-7)
 - c) (n-4)(n+6) d) (r-8)(r+3)
 - e) (h+9)(h-5) f) (e-5)(e+6)

B

- 6. Expand and simplify.
 - **a)** 5(x+4)(x+6) **b)** 3(y+7)(y-3)
 - c) -2(t-5)(t+6) d) -(h-2)(h-8)
- 7. Expand and simplify.
 - a) (x+3)(x+5) + (x+4)(x+2)
 - **b)** (y+6)(y-3) + (y-5)(y+4)
 - c) (c-4)(c+6) (c+2)(c-3)
 - **d)** -(k+7)(k+5) + (k-6)(k-3)

8. Expand and simplify.

- a) 3(2x+3)(3x-5) + 4(5x-2)(4x+3)
- **b)** 5(3y-4)(2y-3) 3(4y+1)(2y-1)
- c) $(g+6)^2 (g-6)^2$
- **d)** -4(5r-3)(3r+2) + 5(3r+4)(2r-5)
- **9.** An athlete throws a metal ball in a shotput event at a track and field meet. The predicted flight path of the ball is defined by the relation

h = -2(d - 4)(d - 7), where *d* is the distance, in metres, from the throwing circle and *h* is the height, in metres.

- a) Expand and simplify the relation.
- b) Verify that the relation from part a) is equivalent to the original relation. Use both relations to determine the height of the shot-put if *d* represents 5 m.

- **10.** A square patio has side length *x*. One dimension is increased by 2 m and the other is increased by 3 m.
 - a) Write an algebraic expression for the area of the original patio.
 - **b)** Write an algebraic expression for the area of the new patio.
 - c) Expand and simplify your area expression from part b).
 - d) Find an expression that represents the increase in area.
 - e) If *x* represents 6 m, find the increase in area.
- **11.** A rectangle has width *w* centimetres and length 3 cm more than its width.
 - a) Draw a diagram of the rectangle.
 - **b)** Express the area as a product.
 - c) Expand and simplify the area expression.
- 12. A square-based rectangular prism has a base length of *w* centimetres and height 5 cm more than its base length.
 - a) Draw a diagram of the square-based rectangular prism.
 - **b)** Express the volume of the square-based rectangular prism as a product.
 - c) Expand and simplify the volume expression.

13. A parabola has equation

y = (x+4)(x-2).

- a) Find the x-intercepts of y = (x + 4)(x - 2).
- **b)** Expand and simplify the equation.
- c) Graph the result from part b). Verify that the *x*-intercepts are the same.

14. Write an algebraic expression for the area of each figure. Expand and simplify. Then, find the area in another way to verify your results.

- 15. The number of glasses of pink lemonade, *n*, sold by the Lemonade Dreams Café on a given day is modelled by n = 300 - 50p, where *p* is the price, in dollars.
 - a) Solve this equation for *p*.
 - b) The revenue generated by lemonade sales is R = 2np. Substitute your expression for p from part a), and expand to obtain an expression for the daily pink lemonade revenue.

Principles of Mathematics 10, pages 220-227

A

- 1. Draw a diagram to illustrate each product.
 - a) $(x+3)^2$ b) $(x+4)^2$ c) $(x+c)^2$ d) $(cx+d)^2$
 - $\mathbf{u} = \mathbf{u} + \mathbf{u}$
- **2.** Expand and simplify.

a)	$(x+2)^2$	b) $(y+3)^2$	
c)	$(a+8)^2$	d) $(n+1)^2$	
e)	$(w + 12)^2$	f) $(m+5)^2$	2
g)	$(p+13)^2$	h) (z + 15)	2

- **3.** Expand and simplify.
 - a) $(x-1)^2$ b) $(r-6)^2$ c) $(f-7)^2$ d) $(b-4)^2$ e) $(e-5)^2$ f) $(k-14)^2$ g) $(s-11)^2$ h) $(h-9)^2$
- 4. Expand and simplify.

a)
$$(x + 5y)$$

b) $(2x + y)^2$

c)
$$(3a+4b)$$

- **d)** $(4c 5d)^2$
- e) $(5d + 7m)^2$ f) $(6r - 8j)^2$
- **g**) $(0r \delta f)^2$
- **b)** $(3s-5t)^2$
- i) $(4g 9h)^2$
- i) $(7u 6w)^2$

- 5. Expand and simplify.
 - **a)** (x+4)(x-4)
 - **b)** (y-7)(y+7)
 - c) (v+8)(v-8)
 - **d)** (u-6)(u+6)
 - **e)** (t-3)(t+3)
 - **f)** (e+5)(e-5)
 - **g)** (i-16)(i+16)
 - **h)** (u+25)(u-25)
- 6. Expand and simplify.
 - a) (a-b)(a+b)b) (5c-d)(5c+d)c) (s+4t)(s-4t)d) (q-6n)(q+6n)e) (4p+7w)(4p-7w)f) (8h-3f)(8h+3f)
- 7. Expand and simplify. Verify your answers. Check that substituting x = 3 into the original expression and the simplified expansion yields the same answer.
 - a) (x-2)(x+2)
 - **b)** $(x+6)^2$
- 8. Expand and simplify. Verify your answers. Check that graphing both the original expression and the simplified expansion using a graphing calculator yields only one graph.
 - a) (x+3)(x-3)
 - **b)** $(x-4)^2$

- **9.** Expand and simplify. Verify your answers. Check that using a CAS to expand the original expression yields the same answer.
 - a) (x+6)(x-6)
 - **b)** $(x-12)^2$
- 10. The base, *s*, of a square has been increased by *x*. Both *s* and *x* are measured in the same units. Write a formula for the area of the new square. Expand and simplify.
- **11.** Each dimension of a square deck at the back of a house is increased by 3 m.
 - a) Draw a diagram of the situation.
 - **b)** Find a simplified algebraic expression of the new deck.
 - c) Find a simplified algebraic expression for the increase in area.
- **12.** A square has side length 8*a*. One dimension is increased by 3*b* and the other is decreased by 3*b*.
 - a) Find an algebraic expression for the resulting area. Expand and simplify.
 - **b)** Find an algebraic expression for the change in area.
 - c) Calculate the area of the square and change in area if *a* represents
 4 cm and *b* represents 2 cm.

- **13.** A parabola has equation $y = (x 3)^2$.
 - a) Identify the coordinates of the vertex.
 - **b)** Expand and simplify the equation.
 - c) Verify that the coordinates of the vertex satisfy the equation from part b).
- 14. A parabola has equation $y = (x + 4)^2$.
 - a) Identify the coordinates of the vertex.
 - **b)** Expand and simplify the equation.
 - c) Verify that the coordinates of the vertex satisfy the equation from part b).
- **15.** Use two methods to determine an algebraic expression to represent the area of the figure. Verify that they are equivalent expressions.

- **16.** Expand and simplify. Use a CAS to verify your answers.
 - a) $(x+2)^4$
 - **b**) $(x-4)^3$
 - c) (2x+1)(x+4)(3x+2)
 - **d)** $(3x^2 + 4x + 2)^2$

- 1. Find the greatest common factor of each pair of terms.
 - a) 4x and 5xb) 4cd and -6cfc) x^3 and x^4 d) m^5 and m^8 e) $7h^2$ and 3hf) $-8y^5$ and $-6y^3$
- 2. Use algebra tiles or a diagram to illustrate the factoring of each polynomial.
 - a) 3x + 9b) $x^2 + 3x$ c) $2x^2 + 4x$ d) $4x^2 + 2x$
- **3.** Factor fully, if possible.
 - **a)** 14m + 21n
 - **b)** 5c + 10d
 - **c)** 13ab 7ac
 - **d)** $3x^3 5x^2$
 - **e)** 5p + 7q
 - **f)** $12r^5 + 18r^3$
 - **g**) $2h^4 + 6h^3 4h^2$
 - **h)** 9b + 7c 5d

4. Factor fully, if possible.

- a) $16x^{3}y + 18xy^{3}$ b) $15a^{4}b^{3} - 10a^{2}b^{5}$ c) $4gh^{2} - 5i$ d) $30r^{4}s^{2}t + 25r^{3}st^{2}$ e) $5d^{3}e^{2} + 3d^{2}e - 7de^{3}$ f) 9ab - 5cd + 7efg) $3h^{4}k^{2} + 6h^{3}k^{4} - 9h^{2}k^{3}$
- **h)** $12m^5n^3 10m^2n^4 + 14m^3n^5$

B

- 5. Factor, if possible.
 - a) 2x(x+5) + 3(x+5)
 - **b)** x(x-3) 2(x-3)
 - c) 5a(a+3b) + 4b(a+3b)
 - **d)** 3s(2s+5t) 7t(2s+5t)
 - e) 4c(3d-2) 3(3d+2)
 - f) 6h(2h+5) 7(2h+5)
- 6. Factor by grouping.
 - **a)** gx + gy + 3x + 3y
 - **b)** $x^2 + 4x + 2x + 8$
 - c) $cd^{2} + 5cd + 3d + 15$
 - **d)** $9m^2 12m 12m + 16$
 - e) $10p^2 15p + 8p 12$
 - **f)** $12r^2 9r 8r + 6$
- 7. a) Write a polynomial with two terms that has a GCF of 8.
 - **b)** Write a polynomial with two terms that has a GCF of *y*.
 - c) Write a polynomial with two terms that has a GCF of $3a^2$.
 - **d)** Write a polynomial with two terms that has a GCF of $5m^3n^4$.
- 8. The formula for the area of a trapezoid can be expressed as $A = \frac{1}{2}b_1h + \frac{1}{2}b_2h$,

where *h* is the height, in centimetres, and b_1 and b_2 are the lengths of the parallel sides, in centimetres.

- a) Write the formula in factored form.
- **b)** If h = 3 cm, $b_1 = 2$ cm, and $b_2 = 4$ cm, find the area using both the original and the factored forms. What do you notice? Explain why this is so.

- 9. The formula for the surface area of a cone is $SA = \pi r^2 + \pi rs$.
 - a) Write the formula in factored form.
 - b) If *r* represents 3 cm and *s* represents 5 cm, find the surface area using both the original and the factored forms. What do you notice? Explain why this is so.
- 10. The formula for the volume of material used to make the hollow cylinder shown is $V = \pi h R^2 \pi h r^2$, where *h* is the height, in centimetres, *R* is the length of the external radius, in centimetres, and *r* is the length of the internal radius, in centimetres.

- a) Write the formula in factored form.
- **b)** If *h* represents 5 cm, *R* represents 8 cm, and *r* represents 6 cm, find the volume using both the original and the factored forms. What do you notice? Explain why this is so.

- 11. A rectangle has area given by the expression $4x^2 + 8x$. The length and width of the rectangle can be found by factoring the expression. Find all possible expressions for the length and width.
- 12. Factor.
 - a) 4x(y-3) + 3(3-y)
 - **b)** 6x(y-4) 5(4-y)

13. Write an expression, in factored form, for the shaded region.

- 14. Factor the quadratic relation $y = 3x^2 5x$ to find the *x*-intercepts.
- 15. Factor the quadratic relation $y = 6x^2 + 7x$ to find the *x*-intercepts.
- **16.** Factor fully using a fraction as one of the common factors.

a)
$$\frac{1}{4}x^2 + \frac{3}{4}y^2$$

b) $\frac{2}{5}a^2b - \frac{1}{5}ab^2$

- 1. Illustrate the factoring of each trinomial using algebra tiles or a diagram.
 - a) $x^2 + 3x + 2$ b) $x^2 + 5x + 6$ c) $x^2 + 7x + 10$ d) $x^2 + 6x + 9$
- **2.** Find two integers with the given product and sum.
 - **a)** product = 42, sum = 13
 - **b)** product = 8, sum = 6
 - c) product = -6, sum = -1
 - **d)** product = -18, sum = -3
- 3. Factor, if possible.

a)
$$x^2 + 6x + 5$$

b) $m^2 + 8m + 15$
c) $n^2 + 8n + 6$
d) $k^2 + 8k + 12$
e) $f^2 + 10f + 5$
f) $g^2 + 11g + 30$
g) $w^2 + 6w + 8$
h) $a^2 + 7a + 6$
i) $b^2 + 3b + 3$
j) $n^2 + 8n + 7$

- 4. Factor, if possible.
 - a) $n^2 10n + 16$ b) $p^2 - 12p + 12$ c) $r^2 - 7r + 10$ d) $z^2 - 15z + 56$ e) $w^2 - 9w + 18$ f) $m^2 - 13m + 26$ g) $r^2 - 3r + 2$ h) $p^2 - 13p + 12$ i) $k^2 - 11r + 10$ j) $c^2 - 7c + 12$

- 5. Factor, if possible.
 - **a)** $a^2 5a 24$
 - **b)** $q^2 + 5q 6$
 - **c)** $h^2 7h 18$
 - **d)** $x^2 + x 13$
 - **e)** $k^2 k 12$
 - **f**) $b^2 + 2b 3$
 - **g**) $f^2 5f 10$
 - **h**) $t^2 + 11t 26$
- 6. Determine binomials that represent the length and width of each rectangle. Then determine the dimensions of the rectangle if *x* represents 12 cm.
 - a) Area is $x^{2} + 17x + 60.$ b) Area is $x^{2} + 16x + 28.$
- **7.** Factor completely by first removing the greatest common factor.
 - a) $3x^2 + 15x + 18$
 - **b)** $4m^2 32m + 48$
 - c) $5k^2 + 50k + 80$
 - **d)** $4p^2 36p + 80$
 - e) $x^3 + 19x^2 42x$
 - **f)** $cx^2 6cx 27c$

- 8. Determine two values of *d* so that each expression can be factored.
 - a) $x^{2} + 10x + d$ b) $x^{2} - 12x + d$ c) $x^{2} + x - d$ d) $x^{2} - 3x - d$
- **9.** Determine two values of *k* so that each expression can be factored.

a)
$$x^2 + kx + 24$$

b) $x^2 - kx + 6$

- c) $x^2 + kx 12$
- **d)** $x^2 kx 12$
- **10.** Factor, if possible.

a)
$$m^2 + 14mn + 24n^2$$

b)
$$p^2 - 8pq + 15q^2$$

c)
$$r^2 + 2rs - 48s^2$$

d)
$$w^2 - 3wz - 10z^2$$

- **11.** A parabola has equation $y = x^2 + 2x 8$.
 - a) Factor the right side of the equation.
 - **b)** Identify the *x*-intercepts of the parabola.
 - c) Find the equation of the axis of symmetry, find the vertex, and draw the graph.

12. The height of a rock thrown from a walkway over a lagoon can be approximated by the formula $h = -5t^2 + 20t + 60$, where *t* is the time in seconds, and *h* is the height, in metres.

- a) Write the formula in factored form.
- **b)** When will the rock hit the water?

13. a) Factor each of the following expressions. $x^4 + 2x^2 + 1$ $x^4 + 4x^2 + 4$

$$x^4 + 6x^2 + 9$$

 $x^4 + 8x^2 + 16$

- **b)** How are the expressions and the factored forms of the expressions alike?
- c) How are the expressions and the factored forms of the expressions different?
- **d)** Write the next two expressions and the factored form of each of these expressions.
- 14. Factor each of the following expressions.

a)
$$x^4 + 12x^2 + 20$$

b)
$$x^4 + 8x^2y^2 + 7y^4$$

c) $x^6y^6 - 4x^3y^3z^2 - 12z^4$

- 1. Illustrate the factoring of each trinomial using algebra tiles or a diagram.
 - **a)** $2x^2 + 9x + 4$
 - **b)** $3x^2 + 8x + 5$
 - c) $4x^2 + 9x + 2$
 - **d)** $2x^2 + 7x + 3$
- 2. Factor, if possible.
 - **a)** $6x^2 + 11x + 3$
 - **b)** $2y^2 + 11y + 15$
 - c) $5m^2 + 14m + 8$
 - **d)** $3d^2 + 17d + 10$
 - **e)** $4p^2 + 7p + 8$
 - **f)** $12s^2 + 31s + 20$
- 3. Factor, if possible.
 - **a)** $6m^2 17m + 5$
 - **b)** $4m^2 m + 7$
 - c) $12r^2 11r + 2$
 - **d)** $5b^2 13b + 6$
 - e) $2k^2 13k + 21$
 - **f)** $12h^2 28h + 15$

- 4. Factor, if possible.
 - **a)** $8k^2 2k 3$
 - **b)** $12g^2 7g 10$
 - c) $16c^2 + 14c 15$
 - **d)** $5u^2 + 7u 3$
 - **e)** $10a^2 + 9a 7$
 - **f**) $6v^2 v 15$

- 5. Factor.
 - **a)** $2x^2 + 9xy + 4y^2$ **b)** $6a^2 - 11ab + 3b^2$
 - c) $8r^2 + 22rs + 15s^2$
 - **d)** $6g^2 + 7gh 20h^2$
 - e) $9p^2 + 15pq 14q^2$
 - **f)** $12c^2 11cd 15d^2$
- 6. Factor.
 - **a)** $16d^2 28d 30$
 - **b)** $6j^2 + 3j 45$
 - c) $32b^2 + 40b 12$
 - **d)** $30z^2 34z 8$
 - **e)** $12v^2 8v 4$
 - **f)** $10t^2 4t 14$
- 7. Factor. Then substitute x = 3 into both forms. Are the results the same? Explain.
 - **a)** $2x^2 + 7x + 3$
 - **b)** $4x^2 16x + 15$
 - c) $2x^2 5x 3$
 - **d)** $3x^2 x 10$
 - **e)** $6x^2 x 15$
 - **f)** $15x^2 + 7x 2$
 - **g**) $10x^2 + 9x 9$
 - **h**) $8x^2 + 10x 3$
 - **i**) $2x^2 + x 3$
 - **j**) $6x^2 + 17x + 5$

- 8. Determine two values of *h* so that each trinomial can be factored over the integers.
 - **a)** $2x^2 + hx + 4$
 - **b)** $3y^2 + hy + 16$
 - c) $5g^2 + hg + 12$
 - **d)** $6s^2 hs 12$
- **9.** Determine two values of *k* so that each trinomial can be factored over the integers.
 - a) $9x^2 + 15x + k$
 - **b)** $5y^2 11y + k$
 - c) $4m^2 + 16m + k$
 - **d)** $3w^2 10w + k$

10. A rectangle has area defined by $6x^2 + 11x - 35$.

- a) Factor to find algebraic expressions for the length and width of the rectangle.
- **b)** If *x* represents 8 cm, determine the perimeter and area of the rectangle.

- 11. The height of a ball thrown from the top of a ladder can be approximated by the formula $h = -2t^2 + 4t + 48$, where t is the time, in seconds, and h is the height, in metres.
 - a) Write the formula in factored form.
 - **b)** Determine when the ball will hit the ground.
- 12. Factor each of the following expressions.
 - **a)** $6m^4 + 31m^2 + 40$
 - **b)** $8q^4 38q^2 + 35$
 - c) $10a^4 7a^2 12$
- 13. Factor.
 - a) $3(x+c)^2 + 7(x+c) + 2$
 - **b)** $2(x-d)^2 + 9(x-d) + 10$
 - c) $6(x+m)^2 + 5(x+m) + 1$

5.6 Factor a Perfect Square Trinomial and a Difference of Square
Principles of Mathematics 10, pages 248–255

1. Factor.

- a) $x^2 36$ b) $y^2 - 25$ c) $4h^2 - 49$ d) $121k^2 - 64$ e) $81a^2 - 4$ f) $100r^2 - 9$ g) $144y^2 - 169$ h) $196u^2 - 1$
- 2. Factor.
 - a) $a^2 36b^2$ b) $r^2 - 49s^2$ c) $25 - 36c^2$ d) $64 - 81d^2$ e) $9q^2 - 4r^2$ f) $g^2 - 16h^2$ g) $18v^2 - 98b^2$ h) $12k^2 - 27c^2$
- **3.** Verify that each trinomial is a perfect square. Then factor.
 - a) $x^2 + 10x + 25$ b) $f^2 + 14f + 49$ c) $r^2 - 8r + 16$ d) $u^2 - 18u + 81$ e) $e^2 + 20e + 100$ f) $36 - 12v + v^2$
- **4.** Verify that each trinomial is a perfect square. Then factor.
 - a) $16m^2 + 24m + 9$
 - **b)** $4k^2 + 28k + 49$
 - c) $25w^2 + 10w + 1$
 - **d)** $81y^2 + 180y + 100$
 - e) $36p^2 + 60p + 25$

- 5. Factor fully, if possible.
 - **a)** $9x^2 + 24xy + 16y^2$
 - **b)** $4m^2 20mn + 25n^2$
 - c) $49a^2 + 42ab + 9b^2$
 - **d)** $25p^2 64q^2$
 - e) $26w^2 8wz + 9z^2$
 - **f)** $100r^2 81s^2$
 - **g**) $9q^2 2r^2$
 - **h**) $64j^2 112jk + 49k^2$
- 6. a) Find an algebraic expression for the area of the shaded region.
 - **b)** Write the area expression in factored form.

- 7. Determine all values of *b* so that each trinomial is a perfect square.
 - **a)** $x^2 + bx + 36$
 - **b)** $9y^2 + by + 16$
 - c) $25p^2 bpq + 49q^2$
 - **d)** $81r^2 brs + 4s^2$
- 8. Determine all values of *c* so that each trinomial is a perfect square.
 - **a)** $x^2 + 16x + c$
 - **b)** $9y^2 30y + c$
 - c) $25m^2 + 20mn + c^2n^2$
 - **d)** $z^2 + 30z + c$

- **9.** Determine two values of *k* so that each trinomial can be factored as a difference of squares.
 - **a)** $a^2 kb^2$
 - **b**) $ky^2 16$
 - **c)** $64m^2 k$
 - **d)** $36p^2 kq^2$
- 10. The area of an unknown shape is represented by $16x^2 + 56x + 49$. If x must be an integer, what shape(s) could this figure be?
- 11. a) A parabola has equation $y = x^2 - 8x + 16$. Rewrite the equation in factored form to find the coordinates of the vertex.
 - b) A parabola has equation $y = x^2 + 6x + 9$. Rewrite the equation in factored form to find the coordinates of the vertex.

- 12. Factor to evaluate each difference.
 - **a)** $20^2 13^2$
 - **b)** $57^2 23^2$
 - c) $104^2 103^2$
 - **d)** $88^2 77^2$
 - e) $67^2 39^2$
 - **f)** $49^2 47^2$

- 13. Factor.
 - a) $(x-5)^2 9$ b) $(x+3)^2 + 5(x+3) + 6$ c) $36x^4 - 49y^4$ d) $m^6 - 6m^3 + 9$ e) $a^8 + 14a^4 + 49$ f) $\frac{x^6}{16} - \frac{y^6}{25}$
- **14. a)** Show that $x^3 1 = (x 1)(x^2 + x + 1)$.
 - **b)** Show that $x^3 + 1 = (x + 1)(x^2 x + 1).$
 - c) Show that $x^3 8 = (x 2)(x^2 + 2x + 4)$.
 - d) Show that $x^3 + 8 = (x + 2)(x^2 2x + 4).$
- **15. a)** Factor $y^3 27$. **b)** Factor $y^3 + 27$.

- **1.** Use the distributive property to find each binomial product.
 - a) (x+7)(x+4)
 - **b)** (x-3)(x-5)
 - c) (x+2y)(x-5y)
 - **d)** (4a-3b)(2a+5b)
- **2.** Expand and simplify.

a)
$$-(k-3)(k+5)$$

- **b)** 3(m+2n)(m-3n)
- c) t(t-3v)(t-4v)
- **d)** (y+2)(y+5) (y-2)(y-5)
- e) 2x(x+1)(x-3)
- f) 4x(2x+1)(x-3) 2x(x+4)(x-5)
- **3.** Write an algebraic expression to represent the area of the figure. Expand and simplify.

- **4.** Draw a diagram to illustrate each product.
 - **a)** $(x+5)^2$ **b)** $(a+3)^2$
- **5.** Expand and simplify.

a)
$$(x+4)^2$$

b)
$$(q+7)^2$$

- c) $(r-8)^2$
- **d**) $(t-5)^2$
- e) $(n+8)^2$
- **f)** $(p-6)^2$

- 6. Expand and simplify.
 - **a)** (k+11)(k-11)
 - **b)** (r-8)(r+8)
 - c) (s+13)(s-13)
 - **d)** (u-5)(u+5)
 - e) (x-9)(x+9)
 - **f)** (t+4)(t-4)
- 7. Expand and simplify.
 - **a)** $(3x + y)^2$
 - **b)** $(4m-n)^2$
 - c) $(6p+5q)^2$
 - **d)** $(8p 7q)^2$
 - e) (2g-3h)(2g+3h)
 - **f)** -(4r+5s)(4r-5s)
- 8. Use algebra tiles or a diagram to illustrate the factoring of each polynomial.

a) $x^2 + 5x$ **b)** $2x^2 + 6x$

9. Factor.

a)
$$5x + 15y$$

b) $13ab - 15bc$
c) $t^2 + 5t$

- **d)** $3m^2 6m^3$
- 10. Factor by grouping.

a)
$$15x^2 + 10x + 12x + 8$$

b) $3m^2 - 15m - 2m + 10$
c) $10n^2 + 2n - 5n - 1$

c) $10p^2 + 2p - 5p - 1$ d) $6x^2 - 2x - 15x + 5$ 11. Factor, if possible.

- **a)** $6m^2 8m + 4$
- **b)** cx + cy + dx + dy
- c) $7a^2 13ab 6b^2$
- $d) ghz^2 g^2hz + ghz$
- 12. A rectangle has area given by the expression $14x^2 + 7x$. The length and width can be found by factoring the expression. Find all possible expressions for the length and width.
- **13.** Illustrate the factoring of each trinomial using algebra tiles or a diagram.
 - a) $x^2 + 8x + 15$ b) $x^2 + 5x + 4$
 - c) $x^2 + 8x + 16$
- 14. Factor.
 - **a)** $d^2 + 11d + 30$
 - **b)** $q^2 + 10q + 16$
 - c) $m^2 15m + 56$
 - **d)** $z^2 8z + 12$
 - **e)** $r^2 + 6r 7$

f)
$$w^2 + 5w - 24$$

g)
$$p^2 - 7p - 18$$

h) $e^2 - 3e - 10$

15. A parabola has equation

 $y = x^2 + 2x - 15.$

- a) Factor the right side of the equation.
- **b)** Identify the *x*-intercepts of the parabola.
- c) Find the equation of the axis of symmetry, find the vertex, and draw the graph.

16. Factor.

- **a)** $8x^2 + 18x + 7$
- **b)** $15y^2 + 26y + 8$
- c) $6c^2 13c + 5$
- **d)** $8h^2 10h + 3$
- **e)** $4w^2 + 8w 21$
- **f)** $6p^2 19p 7$
- 17. Factor, if possible.
 - a) $6x^2 + 5xy 25y^2$
 - **b)** $12m^2 7mn 12n^2$
 - c) $4p^2 + 7pq + 3q^2$
 - **d)** $3k^2 13kv + 4v^2$
 - **e)** $7c^2 + 8cd 5d^2$
 - **f)** $6h^2 13hk + 5k^2$
- **18.** A rectangle has area defined by $12x^2 + 17x + 6$.

- a) Factor to find the algebraic expressions for the length and width of the rectangle.
- **b)** If *x* represents 10 cm, determine the perimeter and the area of the rectangle.
- **19.** Factor.

a)
$$x^2 - 16$$

b) $y^2 - 64$
c) $9a^2 - 16b^2$
d) $25m^2 - 49n^2$

- **20.** Verify that each trinomial is a perfect square. Then, factor.
 - a) $x^2 + 12x + 36$ b) $q^2 - 10q + 25$ c) $16m^2 + 24m + 9$
 - c) $16m^2 + 24m + 9$
 - **d)** $9a^2 30a + 25$
 - e) $4a^2 + 28ab + 49b^2$
 - **f)** $64p^2 80pq + 25q^2$