P₁

Date:

2. Calculate the surface area of a

SA = 2(bh + bl + hl), where

b = 5 cm, h = 11 cm, l = 12 cm.

rectangular prism using the formula

Substituting Values Into Equations

When you are substituting values into equations, make sure you use the correct order of operations:

- brackets first
- multiply and divide in order from left to right

Name:

• add and subtract in order from left to right

Determine the value of y when substituting x = 7 into the following equation.

y = 2(x - 3) + 5y = 2(7 - 3) + 5y = 2(4) + 5y = 8 + 5y = 13

1. Determine the value of y in each equation when d = 6.

```
a) y = (3d + 4) \div 2 + 8
```

b) $y = (3 + d - 7) \times 4d + 5$

Modelling and Solving One-Step Equations

To solve a problem, you sometimes need to translate words into equations. For example, "the sum of 4 and another number is 12" can be modelled by the equation 4 + x = 12. The equation can now be solved. x + 4 = 12x + 4 - 4 = 12 - 4Subtract 4 from both sides of the equation. *x* = 8 3. Model each situation with an c) four times a number, s, is twenty-eight algebraic equation. a) seven more than a number, p, is twelve **d**) when a number, *k*, is divided by six, the result is nine **b**) three less than a number, *x*, is eleven

PDF Proof aptara

4. Develop and solve an algebraic equation for each question.

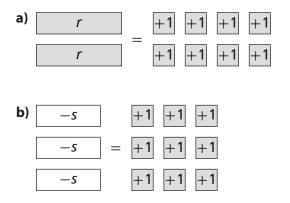
- a) If Jim's height increased by 13 cm over the past year and he is now 152 cm, how tall was he a year ago?
- b) Ayisha worked twice as long on a math project as Harpreet did. If Ayisha worked for 50 min on the project, how long did Harpreet work on it?

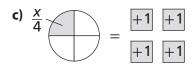
Solving Two-Step Equations

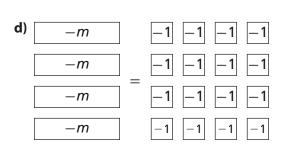
To solve a two-step problem of the form ax + b = c, you need to isolate the variable on one side of the equal sign. When undoing the operations performed on the variable, follow the reverse order of operations: • Subtract and add in order from left to right. • Multiply and divide in order from left to right. Solve 6x + 7 = 256x + 7 - 7 = 25 - 7Subtract 7 from both sides of the equation. 6x = 18 $\frac{6x}{6} = \frac{18}{6}$ Divide both sides of the equation by 6. x = 3Left Side = 6x + 7Right Side = 25Check: = 6(3) + 7= 18 + 7= 25 Left Side = Right Side The solution is correct. **5.** For each equation, circle the first 6. Solve each equation. Check your solution. operation you undo and underline the second operation you undo. a) 9 + 5j = 49**a)** 2n + 4 = 18 **b)** 3x + 5 = 17

c) 8y - 70 = 94 d) 27 = 7q + 6 b) 4t + 2 = 14

Get Ready • MHR 113


Key Ideas Review


Match each method in column A with an example from column B.


А	В
 Solve by inspection Model the equation using concrete materials, and then balance it. 	a) $-3a = 12$ $\frac{-3a}{-3} = \frac{12}{-3}$ a = -4
3. Perform the opposite operation on both sides of the equal sign.	b) Ask yourself, "What number results from dividing -12 by -3?"
 Check your solution by modelling or substitution. 	c) $-a = -1 -1 -1 -1$ -a = -1 -1 -1 -1 -a = -1 -1 -1 -1 -a = -1 -1 -1 -1
	d) Left Side = $-3a$ Right Side = 12 = $-3(-4)$ = 12
	Left Side = Right Side

Practise and Apply

5. Write the equation modelled by the diagrams.

Ν	a	m	e	

6. Solve by inspection.

a)
$$-7g = 56$$
 b) $-81 = 9p$

c)
$$\frac{-n}{5} = -6$$
 d) $-7 = \frac{b}{3}$

7. Use models to solve each equation. Show your thinking.

a)
$$-9 = 3t$$

11. Show whether y = 18 is the solution to each equation.

a) $72 = \frac{y}{-4}$ **b)** -9 = -2y

c)
$$-3 = \frac{y}{-6}$$
 d) $2y = 36$

- 12. The cost of an adult ticket for a concert is three times the cost of a child's ticket. If an adult ticket costs \$48 what is the cost for a child's ticket?
 - a) Write an equation to represent this problem. What does your variable represent?
 - b) Solve the equation. Verify your answer.
- 13. An LED light bulb lasts 50 times longer than an incandescent light bulb.
 - a) Write an equation to represent this situation.
 - b) If an incandescent light bulb lasts 1000 hours, how long does an LED light bulb last? Show your thinking.
- **10.** By what number would you multiply both sides of the equation to solve it?

a)
$$\frac{x}{5} = -3$$
 b) $-9 = \frac{d}{-4}$

10.1 Modelling and Solving One-Step Equations: ax = b, $\frac{x}{a} = b \bullet$ MHR **115**

b)
$$\frac{b}{4} = -2$$

8. By what number would you divide both sides of the equation to solve it?

a) 14 = -7z **b)** -8g = -64

- **9.** Solve each equation using the opposite operation. Check your answer.
 - **a**) 5*a* = −25

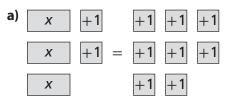
b) -63 = -7k

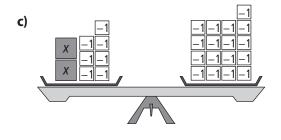
Name:

Date:

10.2 Modelling and Solving Two-Step Equations: ax + b = c

MathLinks 8, pages 380-387


Key Ideas Review

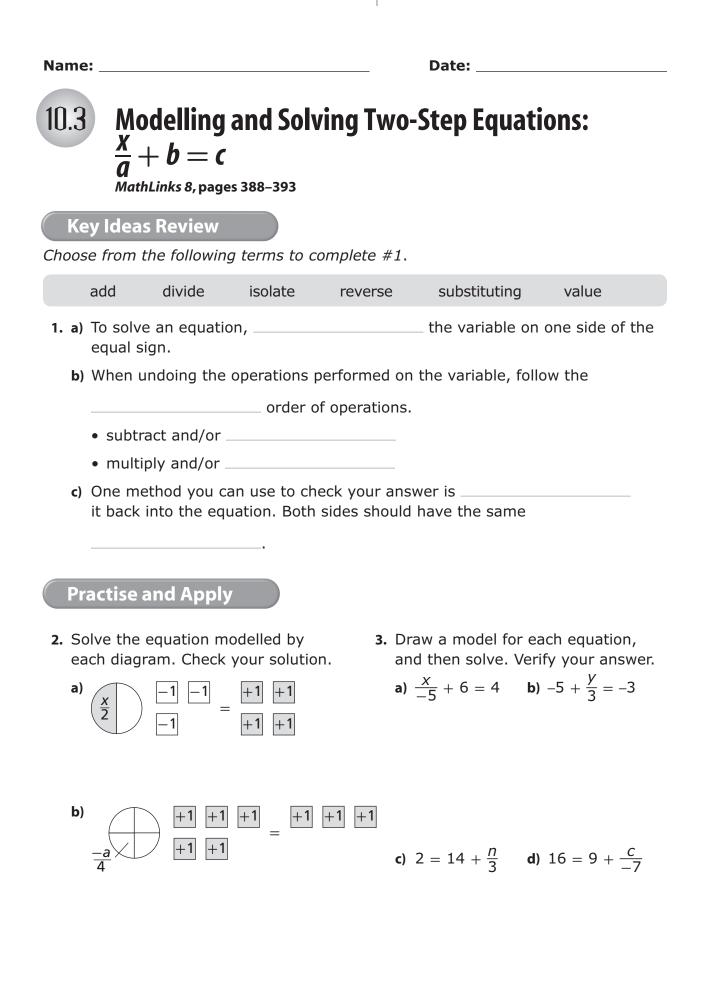

Circle the correct response to complete each statement.

- 1. To solve an equation, (isolate/reverse) the variable on one side of the equal sign.
- 2. When undoing the operations performed on the variable, (reverse/follow) the order of operations.
- 3. Check your solution by (substitution/switching) or drawing a diagram.
- **4.** In the visuals used in this chapter, a white box or rectangle represents a (negative/positive) integer.
- 5. In the visuals used in this chapter, a grey box or rectangle represents a (negative/positive) integer.

Practise and Apply

 Write and solve each equation modelled below. Check your solution.

b) x = -1 -1x = -1 -1x = -1 -1x = -1 -1


7. Circle the first operation you should undo to solve each equation. Underline the second operation you should undo.

a) 5 + 3x = -7 **b)** 4r - 6 = 14

c) 13 = -6y - 11 d) -89 = 9t - 26

ame:	Date:
 Solve the equation. Check your solution. 	10. Show whether $x = 5$ is the solution to each equation.
a) 2x + 5 = 11	a) $4x + 6 = -20$ b) $-5 - 2x = -15$
	c) $8x - 4 = 36$ d) $13x + 12 = 77$
b) $4p + 3 = 19$	
c) −25 = −6 <i>a</i> − 43	11. The length of a square's side is10 cm. This square's perimeter is7 cm more than the perimeter of an equilateral triangle.
	 a) Let s represent the length of one side of the triangle. What equation models this situation?
d) $15 = -11d - 18$	 b) Solve the equation to find the length of the triangle's sides. Verify your answer.
The Hornets won 19 games. This is 5 less than 4 times the number of games the Vampires won.	 A chalet rents for \$150 plus \$72 per person for a weekend.
 a) Let v represent the Vampires' wins. What equation models this situation? Explain 	 a) Write an equation to model this situation.
your thinking.	b) How much will it cost 16 people to rent the chalet for one night?
b) How many games did the Vampires win?	c) If the group budgets \$1950 for the chalet rental, how many people can stay for the weekend?

10.2 Modelling and Solving Two-Step Equations: $ax + b = c \bullet MHR$ **117**

Name: _

4. What are the first and second operations you should perform to solve each equation?

a)
$$\frac{f}{6} + 2 = -4$$
 b) $\frac{r}{-3} - 6 = 7$

c)
$$12 = 7 + \frac{z}{-5}$$
 d) $\frac{k}{11} - 12 = 6$

Date:

8. In the following formula, *f* is the speed that a peregrine falcon can dive in km/h, and *c* is the speed of a cheetah in km/h: $\frac{f}{5}$ + 30 = *c*. If the top speed of a cheetah is 100 km/h, how fast can a peregrine falcon dive? Show your thinking.

5. Solve each equation.

a)
$$\frac{d}{-4} - 5 = -3$$
 b) $4 + \frac{n}{2} = 20$

c)
$$-6 = \frac{b}{-3} + 11$$
 d) $\frac{p}{13} - 2 = -3$

6. Show whether h = 12 is the solution to each equation.

a)
$$-6 = \frac{h}{-4} - 3$$
 b) $5 = 11 - \frac{h}{2}$

c)
$$\frac{-h}{12} + 8 = 9$$
 d) $\frac{h}{3} - 1 = 3$

7. Rick saved \$400 to buy a pair of skis. On Rick's birthday, his brother Jon gave him one eighth of his savings. Including the gift, Rick then had \$475. Let *j* represents Jon's total savings. Write and solve an equation to determine Jon's savings before he gave Rick the gift.

- The discounted price of an airplane ticket is one third of the regular price, plus \$137 in taxes and airport fees.
 - a) Write an equation to represent this situation.
 - b) If the discount ticket to Paris costs \$349, what is the regular price?
 - c) If the regular ticket price to Vancouver is \$699, what will a discount ticket cost?

10.3 Modelling and Solving Two-Step Equations: $\frac{x}{a} + b = c \bullet MHR$ **119**

Name:	Date:
10.4 Modelling and Solving T a(x + b) = c MathLinks 8, pages 394–399	wo-Step Equations:
Key Ideas Review	
<i>For #1 to #4, unscramble the letters to form statement.</i>	a word that correctly completes the
1. To solve an equation, equal sign. OITSLAE	the variable on one side of the
2. When the operation DIUONNG operations.	ons performed on the variable, use
 3. Solve equations in the form a(x + b) = c using the property BDEIIISRTTUV 4. Check your by sulface 	DDGIIINV
Both EIDSS should have	the same value.
Practise and Apply	
 5. Solve the equation modelled by each diagram. Check your solution. a) x -1 -1 -1 = +1 +1 +1 +1 +1 x -1 = +1 +1 +1 +1 +1 +1 	$ \begin{array}{c c} -x & +1 & +1 & -1 \\ \hline -x & +1 & +1 & -1 \\ \hline -x & +1 & +1 & -1 \\ \hline -x & +1 & +1 & -1 \end{array} $
b) $+1$ $+1$ $+1$ x -1 -1 -1 -1 +1 $+1$ $+1$ $=$ x -1 -1 -1 -1 +1 $+1$ $+1$ x -1 -1 -1 -1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

120 MHR • Chapter 10: Solving Linear Equations

lame:	Date:
6. Model and then solve each equation. Check your solution. a) $4(t - 5) = 8$	8. Beth would like to put a 2-m wide grass border around a square garden that has a perimeter of 44 m.
	a) What equation models this situation?
b) $5(r + 7) = -55$	
	b) If she wants a fence around the outside of the grass border, what length of fencing will she have to buy?
7. Solve each equation. Check your answer. a) $-3(x - 8) = 12$	9. Aaron is driving to his friend's place 180 km away. If he can average a speed that is 5 km/h more than his current speed and then triple that, he will arrive in two hours.
	 a) Using s for his current speed, what equation models this situation?
b) $600 = 4(s + 4)$	

b) Determine Aaron's speed.

c) 2(x-3) = 6

10.4 Modelling and Solving Two-Step Equations: $a(x + b) = c \bullet MHR$ **121**

112-123_Ch10_097342_ML8.indd Page 122 7/16/08 11:22:00 PM elhi3

Name:

Date:

Link It Together

Many items depreciate or lose value over time. As a car gets older, its value automatically depreciates a certain amount each year. The relationship between a car's age and its value is linear. Several equations are used to calculate a car's depreciation.

- **1.** Write an equation to represent each of the following depreciation methods. Identify your variables.
 - a) The depreciation is the number of years owned times 1000.
 - **b**) The depreciation is the age of the car times one tenth the cost of the car.
 - c) The depreciation is the cost of the car minus \$2750 and then times one fiftieth the age of the car.
- **2.** Calculate the depreciation of a \$20 000 car after three years, using each of the equations in #1. Show your thinking.

3. Complete the table using the equation from #1b). Show your thinking.

Age of Car (Yr)	Value of Car (\$)
0	30 000
1	
2	
5	
8	
10	

112-123_Ch10_097342_ML8.indd Page 123 7/16/08 11:22:03 PM elhi3

/Volumes/110/MHHE039/indd%0/chapter 10A

Vocabulary Link		
Use the clues to identify the key wo crossword puzzle blank.	ords from Chapter 10. Then, write them in the	
Across		
by 12.	12 <i>d</i> by dividing both sides of the equation	
	as $6a - 4 = 26$, you need to use the	
	to isolate the variable.	
9. In the equation $\frac{m}{7} = 6$, <i>m</i> is the	·	
Down		
1. In the equation $5w + 1 = t$, 1 is	a	
2. $5(s + 2) = 5s + 10$ uses the		
	two expressions that have the same value is	
called a(n)		
	equation such as $d = \frac{c}{2}$ results in	
6. When solving $6a = 72$, you need	d to the variable.	
1		
2	3 4	
	6	
7		
8		