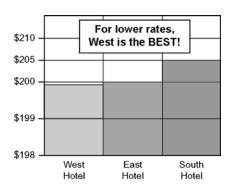
Chapter 3 Warm-Up

Section 3.1

1. Determine the missing value if each rate is equivalent.

a)
$$\frac{18 \text{ beats}}{15 \text{ s}} = \frac{\text{beats}}{60 \text{ s}}$$

b)
$$\frac{12 \text{ eggs}}{\$1.99} = \frac{48 \text{ eggs}}{\$}$$


- 2. Late in the day, a 3-m post casts an 8-m shadow. Using the same ratio, what length of shadow does a 12-m tower cast?
- **3.** A fridge that runs for 300 h uses \$15.14 in electricity. Calculate the hourly unit cost. Show the answer to four decimal places.
- 4. How far can a biker who pedals at a rate of 25 km/h travel in 3.25 h?
- **5.** Lemons cost 3 for 99¢. What is their unit price?

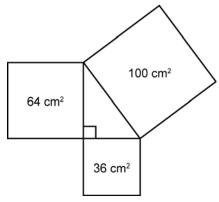
Section 3.2

- List the first five perfect squares.
 Show how you know.
- 2. Use prime factorization to show whether 120 and 196 are perfect squares.
- 3. What is the area of a square picture with a side length of 22 cm?
- **4.** What is the square root of 625? Show how you know.
- **5.** How is the following graph misleading? Describe a better way to display the information.

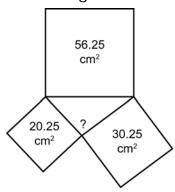
Mental Math

- **6.** You want to show $\frac{10}{40}$ on a circle graph. What fraction of the circle graph do you colour?
- **7.** You want to show $\frac{20}{60}$ on a circle graph. How many degrees do you need for your sector angle?
- **8.** You want to show $\frac{8}{64}$ on a circle graph. What fraction of the circle graph do you colour?
- **9.** You want to show $\frac{60}{80}$ on a circle graph. How many degrees do you need for your sector angle?
- **10.** You want to show $\frac{56}{64}$ on a circle graph. How many degrees do you need for your sector angle?

Mental Math


For #6 to #10, determine the value.

- **6.** 7²
- **7**. 10²
- **8.** √36
- **9**. √121
- **10**. √81



Section 3.3

Use the visual to answer #1 to #3.

- **1.** List the areas of the three squares, from smallest to largest.
- **2.** Calculate the side length of each of the squares.
- **3.** Write an addition statement with the areas of the three squares.
- **4.** Is the triangle shown below a right triangle? Explain your reasoning.

5. A racehorse won five of its eight races and placed in the rest. What is the horse's win, place, race ratio?

Mental Math

6. Use prime factorization to calculate $\sqrt{576}$.

Identify the missing numbers in #7 to #10.

7.
$$7^2 =$$

8.
$$\frac{24}{56} = \frac{3}{\boxed{}}$$

9.
$$\frac{24 \text{ km}}{2 \text{ h}} = \frac{\text{km}}{5 \text{ h}}$$

10.
$$\frac{\$120}{6 \text{ h}} = \frac{\$ \boxed{}}{1 \text{ h}}$$

Section 3.4

1. Estimate $\sqrt{28}$ to one decimal place. Check with a calculator.

2. List the numbers with a square root between 10 and 11.

3. A mat is 30 m². Use perfect squares to estimate the side length to one decimal place. Show your thinking.

4. Use a calculator to check your answer to #3.

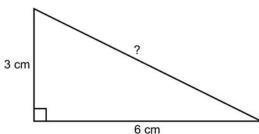
5. Show 10: 5: 15 in lowest terms.

Mental Math

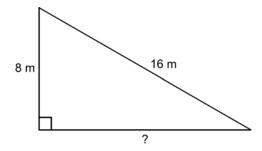
6. Use prime factorization to calculate $\sqrt{324}$.

7. Mentally estimate $\sqrt{26}$.

Identify the missing numbers in #8 to #10.


8.
$$13^2 =$$

9.
$$\sqrt{36} =$$


10.
$$\frac{\$1.25}{5} = \frac{\$}{12}$$

Section 3.5

1. What is the length of the hypotenuse in the triangle shown? Give your answer to the nearest tenth of a centimetre.

2. What is the length of the leg in the triangle shown? Give your answer to the nearest tenth of a metre.

3. A square garden has an area of 40 m². What is the length of each side, to the nearest hundredth of a metre?

4. How long is a path running diagonally across the garden in #3? Show your answer to the nearest hundredth of a metre.

5. Show the ratio of stars to triangles to circles in lowest terms.

Mental Math

6. Use prime factorization to calculate $\sqrt{484}$.

7. Use prime factorization to calculate $\sqrt{441}$.

8. Mentally estimate $\sqrt{60}$.

For #9 and #10, determine the value.

9. 9² **10**. 12²