ML8 Chapter 12 Warm-Up Answers

BLM 12–3 Chapter 12 Warm-Up

Section 12.1

1.

	1	2	3	4	5	6
breakfast	B, 1	В, 2	В, З	В, 4	В, 5	B, 6
lunch	L, 1	L, 2	L, 3	L, 4	L, 5	L, 6
dinner	D, 1	D, 2	D, 3	D, 4	D, 5	D, 6
snack	S, 1	S, 2	S, 3	S, 4	S, 5	S, 6

24 possible outcomes

2.
$$4 \times 6 = 24$$

3. $\frac{1}{24}$
4. $\frac{1}{4} \times \frac{1}{6} = \frac{1}{24}$
5. $\frac{2}{4} \times \frac{3}{6} = \frac{6}{24} = \frac{1}{4}$
6. $t = 8$
7. $t = -8$
8. $t = 8$
9. $t = 72$
10. $t = -72$

Section 12.2

1. Yes, isosceles triangles can tessellate the plane.

- 2. Yes, four 90° angles add up to 360°.
- 3. No, 135° angles do not add up to 360°.

4.

	1	2	3	4
1	1, 1	1, 2	1,3	1,4
3	3, 1	3, 2	3, 3	3, 4
5	5, 1	5, 2	5, 3	5,4
7	7,1	7, 2	7, 3	7,4
9	9,1	9, 2	9, 3	9, 4

 $P(2 \text{ odd numbers}) = \frac{10}{20} = \frac{1}{2}$

5.
$$P(2 \text{ odd numbers}) = \frac{2}{4} \times \frac{5}{5} = \frac{10}{20} = \frac{1}{2}$$

This could also be done using a tree diagram.

6. triangular

7. 2.0 : 2.4 = 1 : 1.2 **8**. Answers will vary. Example: Front-end estimation: $2 \times 2 \div 2 \times 3 = 6 \text{ m}^3$ **9**. Answers will vary. Example: Work with 5s:

2 × 2.5 ÷ 2 × 3 = 5.0 ÷ 2 × 3 = 7.5 m³ **10.** Answers will vary. Example: triangular top/bottom = 2 × 2.5 ÷ 2 × 2 = 5 m² rectangular sides = 3 × 2.5 × 2 = 15 m² rectangular end = 2 × 3 = 6 m² 5 + 15 + 6 = 26 m²

Section 12.3

1. The tessellation is made from a tile consisting of three identical rectangles. The combined tile is then rotated 90° and translated horizontally and vertically.

2. No.

3. Answers will vary. Examples could include an equilateral triangle, isosceles triangle, square, regular hexagon, some irregular quadrilaterals and hexagons, and one irregular pentagon.

4. 11 : 11 : 8 **5**. 484 m³

J. **H**0**H** III

6. 115%, $1\frac{3}{20}$

8. 0.875, 87.5% **9**. 1% = 50 0.5% = 25 100.5% = 5025 **10**. **a**) 100 **b**) 400 **c**) 900

Section 12.4

1. This is a regular 12-sided polygon. **2**. The polygon has been rotated and then translated vertically and horizontally. 3. Answers will vary. Example: If the angles do not add to 360°, the polygons will overlap or there will be gaps. **4**. 33:44 = 3:45. 55 m. Note: Students who recognize this as a 3, 4, 5 Pythagorean triple may be able to do this mentally. **6**. $9 \times 9 = 81$ **7**. $6 \times 6 = 36$ $10 \times 10 = 100 \ 7 \times 7 = 49$ $\sqrt{45} \approx 6.7$ √92 ≈ 9.6 **8**. 7 × 7 = 49 **9**. 5 **10**. 11 $8 \times 8 = 64$ $\sqrt{63} \approx 7.9$