Section 2.4 Extra Practice

1. i) Estimate, ii) then calculate, the number that has the given square root.

- **a)** 4.4
- (i) $4^2 =$
 - 5² = ____
 - 4.4² ≈ ____
- (ii) $4.4^2 =$ ____
- **b)** 11.7
- (i) $11^2 =$ ____
 - 12² = ____
 - 11.7² ≈ ____
- (ii) $11.7^2 =$ ____
- **c)** 0.78
- (i) $0.7^2 =$ ____
 - $0.8^2 =$ ____
 - $0.78^2 \approx _{---}$
- (ii) $0.78^2 =$ ____
- **d)** 10.3
- (i) ____ = ___
 - ____ = ____
 - ____ **≈** ____
- (ii) ____ = ___

2. Estimate (i), then calculate (ii), the area of each square, given its side length. Remember to include the units in each summary statement.

- **a)** 2.3 cm
- (i) $2^2 =$ ____
 - 3² = ____
 - $2.3^2 \approx$ _____ An estimate for area of the square is _____.
 - (ii) $2.3^2 =$ _____ The area of the square is _____.

(continued)

b) 8.9 m

$$(8.9 \text{ m})^2$$
 \approx _____ An estimate for area of the square is _____.

(ii)
$$(8.9 \text{ m})^2 = ____$$
 The area of the square is _____.

c) 0.52 mm

(i)
$$(0.5 \text{ mm})^2 =$$

$$(0.6 \text{ mm})^2 =$$

$$(0.52 \text{ mm})^2 \approx$$
_____ An estimate for area of the square is _____.

(ii)
$$(0.52 \text{ mm})^2 =$$
_____ The area of the square is _____.

d) 0.086 km **(i)**
$$(0.08 \text{ km})^2 =$$

$$(0.09 \text{ km})^2 =$$

$$(0.086 \text{ km})^2 \approx$$
 _____ An estimate for area of the square is _____.

(ii)
$$(0.086 \text{ km})^2 =$$
_____ The area of the square is _____.

3. Determine whether each rational number is a perfect square. If it is a perfect square, write the product as an expression of two equal rational factors.

e)
$$\frac{1}{10}$$

NO _____ **e)**
$$\frac{1}{10}$$
 YES NO _____

b)
$$\frac{1}{4}$$

c)
$$\frac{25}{9}$$

h)
$$\frac{1}{100}$$
 YES

4. Evaluate. Show your work.

b)
$$\sqrt{3.61}$$

c)
$$\sqrt{1225}$$

d)
$$\sqrt{0.0484}$$

5. Calculate the side length of each square from its area. Show your work.

Name: _____

Date: _____

BLM 2-11 (continued)

6. (i) Estimate, **(ii)** then calculate, each square root to the specified number of decimal places.

Example: $\sqrt{56}$ to the nearest hundredth

i) $\sqrt{49}$ 7, $\sqrt{64}$ 8, $\sqrt{56}$ 7.5

ii) 7.48

a) $\sqrt{83}$ to the nearest tenth

i) _____

ii) _____

b) $\sqrt{5.6}$ to the nearest hundredth

i) _____

ii) _____

c) $\sqrt{0.91}$ to the nearest thousandth

i) _____

ii) _____

- **7.** A square lot has an area of 0.5 ha. What are the lot's dimensions to the nearest metre? Show your work. **Hint:** 1 ha = $10\ 000\ m^2$
- **8.** Find the difference between the square of 9 and the square root of 9. Show your work.