Date:

BLM 3-12

Chapter 3 Test

For #1 to 5, select the best answer.

1. In the equation $-(-2)^5 = -32$, which number represents the base of the power?

A - 32

B - 2

C -1

D 2

2. Which expression is equivalent to $(-2) \times (-2) \times (-2) \times (-2) \times (-2)$?

 $\mathbf{A} 2^5$

B 32

C $(-2)^5$ **D** $-(-2)^5$

3. What is the product of 5^2 and 5^4 ?

A 650 **B** 25⁶ **C** 5⁸

 D_{56}

4. Devin was asked to simplify the expression $10 - 2^3 \times (3 - 2^0)^2$. His work is shown below.

 $10 - 2^3 \times (3 - 2^0)^2$ = 10 - 6 \times (3 - 1)^2 Step 1 $= 10 - 6 \times 4$ Step 2 = 10 - 24Step 3 = -14Step 4

In which step did Devin make his first mistake?

A Step 1

B Step 2

C Step 3

D Step 4

5. Two students were asked to write each product of powers as a single power. Their work is shown below.

Danica

Frank

$$3^{3} \times 3^{2} = (3 \times 3 \times 3) (3 \times 3)$$
 $3^{3} \times 3^{2} = 3^{3 \times 2}$
= 3^{6}

$$3^3 \times 3^2 = 3^{3 \times 3}$$

Which of the following statements about their procedures is true?

- A Frank's procedure contains an error and Danica's does not.
- **B** Danica's procedure contains an error and Frank's does not.
- **C** Both Danica and Frank have no errors in their procedure.
- **D** Both Danica and Frank have errors in their procedure.

(continued)

Complete the statements in #6 and 7.

- **6.** The value of $3^3 + 3^0$ is
- **7.** The expression $-\left(\frac{5}{10}\right)^3$ written as a fraction in simplified form is

Short Answer

8. Arrange the powers in order from smallest value to largest value.

$$(-4)^2$$
, $(2)^3$, $-(4)^3$, $(-1)^5$

- **9.** Write each expression as repeated multiplication.
 - **a)** 3⁷
- **b)** $-(-6)^5$ **c)** $(4 \times 5)^3$
- 10. Write each expression as a power in simplified form.

 - **a)** $6^7 \div 6^4$ **b)** $(2^2 + 3)^4$ **c)** $(2^4)^3$
- **11.** Explain in words the difference between the powers 11^3 and 3^{11} .

Extended Response

12. For every metre a scuba diver dives below the water surface of a lake, the light intensity is reduced by 5%. The percent of light intensity can be represented by the equation $I = 100(1 - 0.05)^d$, where I is the intensity of light, as a percent, and d is the depth of the dive, in metres. The intensity of light at the surface of the lake is 100%. Austin wanted to determine the light intensity at a depth of 3 m. His solution is shown below.

$$I = 100(1 - 0.05)^d$$

$$I = 100(1 - 0.05)^3$$

$$I = 100(1^3 - 0.05^3)$$

$$I = 100(0.999875)$$

Austin realized that it is not possible for the light intensity to be approximately 100% at a depth of 3 m. Explain where Austin made his mistake.

- a) Correct Austin's mistake and provide a detailed solution to determine the percent of light intensity at a depth of 3 m. Give your answer to the nearest whole percent.
- **b)** What is the light intensity at a depth of 15 m? Give your answer to the nearest whole percent.