Challenges

Planning Notes: Hot-Air Ballooning

You may wish to use the following steps to introduce and complete this Challenge:

- Read through the Challenge as a class, ensuring that students recognize from the table of values that Balloon 1 is ascending and Balloon 2 is descending. Provide copies of Master 9 0.5 Centimetre Grid Paper to students for creating their graph.
- **2.** Encourage students to use different strategies to solve the problems. You might use the following prompts:
 - How can you use patterns?
 - How can you use linear equations?
 - Is there a formula you can use?

Challenge students to use different strategies, and then compare their answers.

MathLinks 9, page 248
Suggested Timing 60–80 minutes
Materials • grid paper • ruler
Blackline Masters Master 1 Project Rubric Master 9 0.5 Centimetre Grid Paper
Mathematical Processes ✓ Communication (C) ✓ Connections (CN) ✓ Mental Mathematics and Estimation (ME) ✓ Problem Solving (PS) ✓ Reasoning (R) Technology (T) ✓ Visualization (V)
Specific Outcomes PR1 Generalize a pattern arising from a problem-solving context using linear equations and verify by substitution.

PR2 Graph linear relations, analyze the graph and interpolate or extrapolate to solve problems.

- **3.** Encourage students to use different strategies for answering #3 to 5. If they graph the linear relation, encourage them to use increments of no more than 1000 on the vertical axis. This will make it easier to interpolate heights from the graph.
- 4. Clarify that the task is to
 - determine the distance each balloon ascended or descended
 - calculate the speed of ascent or descent for each balloon
 - determine the time when both balloons will be at the same altitude
- **5.** Wrap up by having students account for any differences in their answers. For example, students might note that estimating using a graph was less accurate in comparison to substituting values into an equation.
- **6.** Review the **Master 1 Project Rubric** with students so that they will know what is expected.

Meeting Student Needs

- Encourage students to use a linear graph. You may need to work with them to develop some coordinates for the graph.
- Students who are comfortable with technology may wish to use spreadsheet software or a graphing calculator.
- Students may find it easier to compare the two rates if they convert the data to minutes instead of hours, with the first time becoming zero.
- Have students calculate the altitude of each balloon at 8:30 a.m., which is a midpoint in the data for each. (Answer: Balloon 1: 2600 m; Balloon 2: 7350 m)

ELL

• Ensure students understand the terms *transoceanic jet streams, ascending,* and *descending.*

Gifted and Enrichment

- Have students calculate the exact time and altitude at which the two balloons meet. (Answer: 9:05:37.5 a.m. at 5568.75 m)
- Have students present more than one way to find the solution.

Common Errors

- Students may misread times as decimal values.
- R_x Remind students that hours are measured in 60 min so that the change from 8:15 to 8:45 is 0.5 h, rather than 0.3 h.

Answers

Hot-Air Ballooning

- Note: Students may work in either m or km.
- **1.** 5000 m; 5000 m/h
- **2.** 1500 m; 3000 m/h
- **3.** a),b) Example: According to the graph, the two balloons will meet around 9:07 a.m. at an altitude of approximately 5600 m.

- **4.** Examples:
 - Using the graph in #3, the altitude appears to be about 1700 m for Balloon 1 and almost 8000 m for Balloon 2.
 - Alternatively, Balloon 1 is rising at 83.3 m/min. It is at 100 m at 8:00 a.m. At 8:20 a.m., it will be at $(100 + 20 \times 83.3) = 1766$ m. Balloon 2 is descending at 50 m/min. At 8:15 a.m., it is at 8100 m. At 8:20 a.m., it will be at $(8100 50 \times 5) = 7850$ m.
- 5. Examples:
 - Using the graph from #3, the balloon should reach 8100 m a little before 9:45 a.m.
 - By calculating, the balloon should reach 8100 m at approximately 9:36 a.m. (3000 ÷ 83.3).

This Challenge can be used for either Assessment for Learning or Assessment of Learning.

Assessment	Supporting Learning		
Assessment for Learning			
Hot-Air Ballooning Discuss the Challenge as a class. Have students provide individual responses.	• Consider allowing students to work with a partner and then write individual responses.		
Assessment of Learning			
Hot-Air Ballooning Introduce the Challenge to the class. Have students provide individual responses.	 Master 1 Project Rubric provides a holistic descriptor that will assist you in assessing student work on this Challenge. Page 339 provides notes on how to use this rubric for the Challenge. To view student exemplars, go to www.mathlinks9.ca, access the Teacher Centre on the Online Learning Centre, go to Assessment, and then follow the links. 		

The chart below shows the **Master 1 Project Rubric** for tasks such as this Challenge, Hot-Air Ballooning, and provides notes that specify how to identify the level of specific answers for this project.

Score/Level	Holistic Descriptor	Specific Question Notes
5 (Standard of Excellence)	 Applies/develops thorough strategies and mathematical processes making significant comparisons/connections that demonstrate a comprehensive understanding of how to develop a complete solution Procedures are efficient and effective and may contain a minor mathematical error that does not affect understanding Uses significant mathematical language to explain their understanding and provides in-depth support for their conclusion 	• provides a complete and correct solution
4 (Above Acceptable)	 Applies/develops thorough strategies and mathematical processes for making reasonable comparisons/connections that demonstrate a clear understanding Procedures are reasonable and may contain a minor mathematical error that may hinder the understanding in one part of a complete solution Uses appropriate mathematical language to explain their understanding and provides clear support for their conclusion 	 Demonstrates one of the following: provides a complete response with weak communication in at most two questions provides a complete and correct response based on an incorrect #1 <i>or</i> 2 provides a correct response with justification to any 4 out of 5 questions
3 (Meets Acceptable)	 Applies/develops relevant strategies and mathematical processes making some comparisons/ connections that demonstrate a basic understanding Procedures are basic and may contain a major error or omission Uses common language to explain their understanding and provides minimal support for their conclusion 	 Demonstrates one of the following: correctly completes #1 to 3 and makes a start to #4 or 5 with some weak communication correctly completes #1 to 5 without showing any work or justification correctly completes #3 to 5
2 (Below Acceptable)	 Applies/develops some relevant mathematical processes making minimal comparisons/ connections that lead to a partial solution Procedures are basic and may contain several major mathematical errors Communication is weak 	 Demonstrates one of the following: correctly completes #1 and 2; communication for one question may be weak or absent correctly completes #3 or 4
1 (Beginning)	 Applies/develops an initial start that may be partially correct or could have led to a correct solution Communication is weak or absent 	• correctly completes #1 or 2

For student exemplars, go to www.mathlinks9.ca and follow the links.