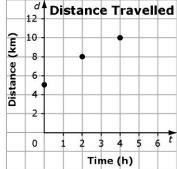
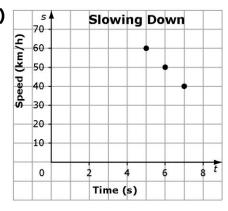

Creating a Table of Values

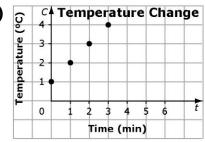
You can use the coordinate pairs on the graph to make a table of values. Arrange the table of values horizontally or vertically. The first row or column in a table of values has the same title as the horizontal axis on the graph. The second row or column has the same title as the vertical axis.

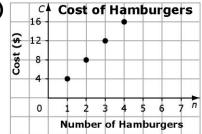


Number of Shirts, n	1	3	5
Cost, C	15	45	75


Number of Shirts, n	Cost, C
1	15
3	45
5	75

1. Create a table of values from each graph.




Analysing Graphs of Linear Relations

A linear relation is a pattern made by a set of points that lie in a straight line. Sometimes it is possible to have points between the ones shown on a graph. Ask, "Does it make sense to have values between those on the graph?"

2. Does it make sense to have points between the ones on each graph? Explain.

b)

	E 1
Name:	80 (
mairie.	_

Date:

BLM 6-2 (continued)

Patterns in a Table of Values

Linear relations can be represented using a table of values. You can sometimes tell that a relationship in a table is linear if both of the following statements are true.

- Each consecutive value in one column changes by the same amount.
- Each consecutive value in the other column changes by the same amount.

S	t
2	6
4	12
6	18
8	24

The difference between each consecutive value for s is 2. The difference between each consecutive value for t is 6. You can use this information to predict the next values in the table.

For *s*, the next value could be 10. For *t*, the next value could be 30.

3. Determine if each table of values represents a linear relation. Explain how you arrived at your answer.

a)	Distance, d (m)	0	15	30	45
	Speed, s (m/s)	2.1	4.2	6.3	8.4

b)	Time, t (s)	Height, <i>h</i> (m)
	5	10
	10	20
	15	40
	20	80

4. For each table of values in #3 that represents a linear relation, predict the next ordered pair.

Linear Relationships

Linear relationships represented by formulas or equations can be graphed by

- making a table of values, and
- graphing the ordered pairs from the table of values.
- **5.** For each equation, create a table of values and graph the linear relation.

a)
$$y = 3x + 2$$

b)
$$t = -4n + 3$$

c)
$$r = n - 8$$