9 Volum

Volume and Surface Area

Get Set

Answer these questions to check your understanding of the Get Ready concepts on pages 362–363 of the *Foundations of Mathematics 10* textbook.

Pythagorean Theorem

1. Find the length of the indicated side of this right triangle to one decimal place.

Solution: The length of the legs are _____ ft and _____ ft. The length of the hypotenuse is x ft.

The hypotenuse is approximately _____ ft long.

Nets

2. Identify the solid for this net.

The net has a _____ base and _____ congruent triangular faces. It is a net of a _____.

Convert Measurements

3. Convert each measure to the unit indicated.

852 in. _____ ft 0.084 m _____ mm 0.6 m² _____ cm² 3.4 ft³ _____ in.³

Area

4. Find the area of the circle. Round your answer to one decimal place.

	Date:
9.1 Volume of Prisms and Pyramids Warm-Up	Textbook pp. 364–371
1. Pythagorean Theorem	2. Rearrange Formulas
The hypotenuse of a right triangle is 10 in. long. One leg of the triangle is 8 in. long. How long is the other leg?	Rearrange the formula to isolate <i>P</i> . I = Prt
3. Rearrange Formulas	4. Math Literacy
Rearrange the formula to isolate <i>t</i> . $d = at^2$	Give an everyday example of when it would be important to determine the volume of an object.
5. Algebraic Equations	6. Alegebraic Equations
Find the value of y when $x = 2$. $y = 3x^2 + 2x - 5$	Find the value of A when $x = 4$ and y = -2. A = 3xy - 4x + 3y

4. Find the volume of the prism.

STEP 1: Determine the area of the triangular face, using the Pythagorean theorem to calculate the height. Round your answer to two decimal places.

$$\underline{}^{2} + h^{2} = \underline{}^{2}$$

$$h^{2} = \underline{}^{2} - \underline{}^{2}$$

$$h^{2} = \underline{}$$

$$h^{2} = \underline{$$

The Area of the triangle face is _____.

STEP 2: Determine the volume of the prism. Round your answer to three decimal places.

Volume = area of base \times height

The volume of the prism is _____.

5. A box in the shape of a rectangular prism has a length of 10 cm, a width of 8 cm, and a height of 5 cm. Find the volume of the box.

Date:

9.2 Surface Area of Prisms and Pyramids			SMS Pp. 372–380
Wa	arm-Up		
1.	Pythagorean Theorem	2.	Math Literacy
	In triangle ABC, angle B measures 90°, the length of side AB is 15 cm, and the length of side BC is 11 cm. Draw the triangle. Use the Pythagorean theorem to find the length of side AC to one decimal place.		Give two examples from real life where you would need to know the surface area of an object.
3.	Rearrange Formulas	4.	Algebra
	Rearrange each formula to isolate the		Solve each equation for the given values.
	indicated variable.		a) $x = 22y + 11$ for x if $y = 2$
	a) $A = bh$, for h		, <u>,</u> ,
	b) $C = 2\pi r$, for r		b) $y = x^2 + 11$ for y if $x = 5$
5.	Nets	6.	Nets
	What object would this net make?		What object would this net make?
7.	Congruence	8.	Math Literacy
	Circle the correct answer.		Jeremy suggests the Pythagorean theorem
	If two triangles are congruent, it means		can be used to calculate the length of side AB in triangle ABC
	they are		AB in triangle ABC.
	a) similar		Explain your
	b) exactly the same size and shape		answer. $B \xrightarrow{53 \text{ cm}} C$
	c) completely different from each other		

Practise

Where necessary, round your answers to one decimal place.

1. Draw and label a net for the rectangular prism.

- 2. Find the surface area of the prism in question 1.
 Two faces have dimensions _____ cm by _____ cm.
 Area = _____ × _____
 Two faces have dimensions _____ cm by _____ cm.
 Area = _____ × _____
 Two faces have dimensions _____ cm by _____ cm.
 Area = _____ × ______
 Surface Area = 2(_____) + 2(_____) + 2(_____)
 The surface area of the prism is ______ cm².
- 3. Draw and label a net for this square-based pyramid.

Date:

4. Find the surface area of the pyramid in question 3.

STEP 1: Find the height of each triangular face of the pyramid using

Pythagorean theorem. Round your answer to two decimal places. $h^2 + ___$

STEP 2: Find the surface area of each triangular face, which are congruent because it is a square-based pyramid. Round your answer to one decimal place.

Surface area of *each* triangular face $=\frac{1}{2}bh$ = $\frac{1}{2}($ ____)(___)

STEP 3: Find the *total* surface area of the pyramid.

Since there are 4 congruent triangular faces:

5. The foundation of a new garage has walls that are 2.5 m high. The garage is 8 m long and 10 m wide. The walls of the foundation are to be sprayed with a waterproofing tar.a) Find the surface area of the exterior walls of the garage.

b) The waterproofing spray costs \$13.95 per square metre. How much will the spray cost?

Date:	_
Date.	_

9.3 Surface Area and Volume of Cylinders

Warm-Up

1.	Math Literacy	2.	Area of a Circle
	Give two or three different real-life examples of cylinders.		Write the formula for the area of a circle. A =
3.	Radius	4.	Number Sense
	Where is the radius on a circle?Circle the correct answer.a) straight across the centre		What is the three-digit decimal value of π ?
	b) around the outside edge		
	c) from the centre to the edge		
5.	Convert Measurements	6.	Rearrange Formulas
	Write each measure using the indicated units.a) 315 ft to yards		Rearrange each formula to isolate the indicated variable. a) $PV = nRT$, for <i>n</i>
	b) 0.185 m to millimetres		
	c) 22 300 mm ² to square centimetres		b) $P = 2(l + w)$, for w
	d) 5184 in. ³ to cubic feet		
7.	Algebraic Expressions	8.	Algebraic Equations
	Find the value of V when $l = 22$ m, w = 18 m, and $h = 20$ m. V = lwh		Find the value of SA when $l = 5$ in., w = 2 in., and $h = 1.5$ in. SA = 2lw + 2lh + 2wh

Date: _

Section 9.3

Practise

Where necessary, round your answers to one decimal place. Use $\pi = 3.14$. 1. Find the surface area of the cylinder.

The surface area of the cylinder is approximately _____ cm².

2. Find the surface area of the cylinder.

The surface area of the cylinder is approximately _____ cm².

3. Find the volume of the cylinder.

The volume of the cylinder is approximately _____ m³.

4. Find the volume of the cylinder.

Convert units to metres. Since there are 100 cm in 1 m, 144 cm is _____ m. $V = \pi r^2 h$ = \pm 144 cm

The volume of the cylinder is approximately _____ m³.

5. A piece of wood to be used as part of a child's toy has the shape of a cylinder. The cylinder has a height of 18 cm and a radius of 4 cm. The cylinder is hollowed out by drilling a hole with radius 1.5 cm through it lengthwise.

a) Find the volume of the cylinder before it is hollowed out.

$$V = \pi r^2 h$$
$$= \pi (\underline{\qquad})^2 (\underline{\qquad})$$
$$\doteq \underline{\qquad}$$

The volume of the cylinder is approximately _____ cm³.

b) Find the volume of wood that is removed when the hole is drilled.

$$V = \pi r^2 h$$
$$= \pi (\underline{\qquad})^2 (\underline{\qquad})$$
$$\doteq \underline{\qquad}$$

The volume of the cylinder of wood removed is approximately _____ cm³.

c) Find the volume of wood remaining in the hollowed-out cylinder.

6. Would more paint be needed to cover all the surfaces of the cylinder before or after it was hollowed out? Explain your answer based on surface area.

Date: ___

9.4 Volume of Cones and Spheres

Warm-Up

1.	Math Literacy	2.	Cones
	Sydney says that if all of the side lengths of a cube are doubled, the volume of the cube will also double. Is she correct? Explain.		Give two real-life examples of cone- shaped objects.
3.	Pythagorean Theorem	4.	Spheres
	Find the length of side EF to the nearest centimetre. $\int_{D}^{T1 \text{ cm}} \int_{54 \text{ cm}}^{F} E$		Give two real-life examples of sphere- shaped objects, other than a ball.
5.	Convert Measurements	6.	Rearrange Formulas
	 Write each measure using the indicated units. a) 42 km to metres b) 352 cm to millimetres c) 573 cm³ to cubic millimetres d) 1250 m² to square feet 		Rearrange each formula for the indicated variable. a) $P = I^2 R$, for I b) $D = \frac{m}{V}$, for V
7.	Algebra	8.	Evaluate Expressions
	Solve for the unknown values. Use $\pi = 3.14$. a) $V = \pi r^2 h$ for $h = 22$ in. and $r = 5$ in. b) $SA = 2\pi r^2 + 2\pi r h$ for $r = 16$ cm and $h = 54$ cm		If π equals 3.14, evaluate $\frac{1}{3}\pi(2)(5)$. Round your answer to one decimal place.

Practise

Where necessary, round your answers to one decimal place. Use $\pi = 3.14$.

1. Find the volume of each cone. Convert measures to the same units where necessary.

The volume of the cone is approximately _____ cm³.

The volume of the cone is approximately _____ in³.

2. Find the volume of each sphere.

The volume of the sphere is approximately _____ in.³

The volume of the sphere is approximately _____ cm³.

Date:

3. A cone has radius 18 in. and height 100 in.a) Find the volume of the cone.

The volume of the cone is approximately _____ in³.

b) The volume of a particular sphere is half the volume of the cone shown above. Find the radius of the sphere.

$$V = \frac{4}{3}\pi r^3$$

Now rearrange the equation to solve for r, knowing the volume of the sphere equals $\frac{1}{2}$ the volume of the cone.

- c) What is the diameter of the sphere?
- 4. A woodworker carves a sphere from a solid cube of wood that has a side length of 18 cm.a) What is the radius of the largest sphere the woodworker can carve from the cube?

b) What is the volume of this sphere?

Date: _

9.5 Solve Problems Involving Surface Area and Volume

Warm-Up

1.	Convert Measurements	2.	Math Literacy
	Write each measure using the units		Regina tells Seema that if the height of
	indicated.		the triangle in a triangular prism is
	a) 31 yd to feet		doubled, the volume will double. Seema
	b) 0.0042		says that if the height is doubled, the
	b) 0.0042 m to millimetres		surface area of the prism will double,
	c) 2276 cm ² to square metres		your answer.
	d) 62 yd ³ to cubic feet		
3.	Number Sense	4.	Volume
	A square prism has a height of 8 in. and a base with 6-in. sides. Calculate the area of the base. 8 in. 6 in.		Calculate the volume of the prism in question 3.
5.	Rearrange Formulas	6.	Pythagorean Theorem
	Rearrange each formula to isolate the		Find the value of <i>x</i> .
	indicated variable.		5
	a) $SA = 2\pi r^2 + 2\pi rh$, for <i>h</i> b) $E = mc^2$, for <i>c</i>		$P \xrightarrow{2+x} 4 \text{ cm}$ Q

Practise

Where necessary, round your answers to one decimal place.

1. Find the volume of each shape.

2. All sides, including the bottom, of the birdhouse shown below are to be painted.

8 in. 5 in. 1.5 in.	-
\downarrow	
What is the total surface area that will be painted?	
Area of back = ×	
=	
Area of front = ×	
Area of 2 sides = × ×	
= Area of base = × =	
Area of front and back triangles = × ×	
Area of roof = ×	
Total surface area to be painted $=$	
Total surface and to be painted	

- 3. A warehouse has the shape of a rectangular prism with a cube attached to one of the long sides. The part of the warehouse that is a rectangular prism has length 200 ft, width 65 ft and height 25 ft. The part that is a cube has side length 20 ft. a) Make a sketch of the warehouse with the measurements indicated.

 - **b**) What is the total volume of the warehouse?

Chapter 9

Review

Chapter 9 Review

9.1 Volume of Prisms and Pyramids, textbook pages 364–371

1. Find the volume of the prism. If necessary, round your answers to one decimal place. Use $\pi = 3.14$.

2. Find the volume of the pyramid.

9.2 Surface Area of Prisms and Pyramids, textbook pages 372–380

3. Find the surface area of the prism.

The surface area of the prism is $___ yd^2$.

5. Find the volume of each object.

9.5 Solve Problems Involving Surface Area and Volume, textbook pages 398–405

6. The composite shape shown below is a rectangular prism with a cube removed from one corner.

a) Find the surface area of the composite shape.

b) Find the volume of the composite shape.