

Identify Line Segments

A line is straight and extends without end in both directions.

A line segment is a part of a line between two points. It is named by its points. The line segment shown is named AB or BA. The line segment can also be written as AB or BA.

1. There are eight line segments highlighted in this photo of a train bridge. Name them.

Measure Angles

2. What are the lengths of each line segment you named in #1? Measure to the nearest tenth of a centimetre, using a ruler.

- **3.** Which of the line segments in the photo have the same length? Name two pairs of equal line segments.
- **4.** a) Which longer line segment is made up of two shorter line segments?
 - **b**) Which two shorter line segments make up this longer line segment?

An **angle** is formed when two lines meet at a point called the **vertex**. An angle is named by the vertex and a point on each line. The middle point is the vertex. The angle shown is $\angle PQR$ or $\angle RQP$.

A protractor is used to measure the size of angles, in degrees. $\angle PQR = 65^{\circ}$

5. What is the measure of each of these angles in the photo of the train bridge?

a) $\angle ABE$ b) $\angle DAE$ c) $\angle DEC$

- **6.** Use a ruler and a protractor to draw an angle with each measure shown. Use letters to name each angle.
 - a) 35° b) 90° c) 125°

Determine Area

Area measures the region inside a two-dimensional shape. It is measured in square units. Examples of square units are

- square centimetres (cm²)
- square metres (m²)
- square kilometres (km²)

One way to measure area is to count the number of square units inside a shape.

This rectangle contains 18 square centimetres.

The area is 18 cm².

Area can also be calculated using a formula:

 $A = \text{length} \times \text{width}$ $A = l \times w$ $A = 6 \times 3$ A = 18The area is 18 cm².

This rectangle also contains 18 square centimetres.

- **7.** What are the areas of the rectangles with the following lengths and widths?
 - a) $4 \text{ cm} \times 3 \text{ cm}$
 - **b)** $6 \text{ cm} \times 2 \text{ cm}$
 - c) $6 \text{ cm} \times 8 \text{ cm}$
 - d) $4 \text{ cm} \times 12 \text{ cm}$
- **8.** Draw three different rectangles that have an area of 16 cm². Show that the areas are equal.

9. The octagon shown was drawn on centimetre grid paper. What is its area?

