Chapter 7 Problems of the Week

1. Use the a) b)	e the class que choose row th Choose column $\frac{4}{6}$ $\frac{2}{3}$ $\frac{1}{6}$	hart be estions e two f at hav e two f n that $\frac{1}{2}$ $\frac{1}{6}$ $\frac{2}{6}$	elow to fraction re a sur fraction have a $\frac{1}{3}$ $\frac{3}{6}$ $\frac{5}{6}$	o answer ns from each m of 3. ns from each a sum of 3.	 2. Is the last number shown for each pattern correct? Write the five missing numbers in each pattern. Then, write a rule for each pattern. a) 3²/₅, 4⁴/₅, 6¹/₅, 7³/₅, 16 b) 12, 11⁵/₈, 11¹/₄, 8¹/₄ c) 3¹/₈, 4³/₄, 6³/₈, 8, 18
 3. Use each number only once to create two proper fractions with the largest possible sum. Then, repeat to create the smallest possible sum. a) 1, 2, 3, 4 b) 1, 3, 5, 7 c) 3, 4, 5, 6 					 4. Use each number once to create two proper fractions with the largest possible difference. Then, repeat to create the smallest possible difference. a) 2, 4, 6, 8 b) 1, 2, 3, 4 c) 1, 3, 5, 7
5. A well-known paradox states that to walk 10 m, you must first walk half way. Once you are half way, you must walk $\frac{1}{2}$ of that distance, or $\frac{1}{4}$ of the total. When does the $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ series get you to the end of 10 m?					 6. a) Consider all the Canadian coins from 1¢ to \$1. List each coin (including the rare 50¢ piece) as an unreduced fraction of a dollar. b) If each fraction needed to be represented at least once, how many coins are needed to equal \$2? Show your answer as the sum of the fractions.
7. A hairdresser is asked to dye a person's hair all seven colours of the rainbow. No two colours can have the same fraction of the total. Write a plan for the hairdresser using fractions.					